Tag Archives: TFT

Arduino Project: Flappy Bird game Clone with a 1.8″ color TFT display (ST7735)

Educ8s.com @ youtube.com:

Playing the Flappy Bird game on Arduino is extremely easy. With a cheap Arduino Uno and a very cheap 1.8″ color TFT display (ST7735) you can enjoy the classic game, the best part? It is going to be a DIY project. Actually you can build your own gaming console using Arduino, like the popular Gamebuino.

The code of the project is by Themistocles Benetatos who shares the code with us. In his blog he describes how he managed to achieve that result. Don’t miss it: http://www.mrt-prodz.com/blog/view/20…

All you have to do is to buy the following parts, if you don’t own them already. The cost is around 10$:

Arduino Project: Flappy Bird game Clone with a 1.8″ color TFT display (ST7735) – [Link]

Experiments with 2.4″ TFT


Rui Cabral tipped us with his latest project. He writes:

Lately I’ve been testing a small 2.4″ TFT display PBC ILI9341 with touch and bought on ebay for less than 8euros!

This graphic display is an excellent solution for both small projects and for more advanced projects since it includes SD card connector to access stored images.

This display has a resolution of 240×320 RGB.

Experiments with 2.4″ TFT – [Link]

S.M.A.R.T. Alarm Clock

by Tony DiCola @ makezine.com:

Wouldn’t it be nice to have an internet-connected alarm clock that automatically sets itself, based on your calendar? You would never miss an early appointment, never forget to set your alarm, and enjoy more restful sleep knowing you’ve solved the nightmare of regulating your alarms. An internet-savvy alarm clock could even watch your inbox and wake you up if friends or family send you an important email.

This S.M.A.R.T. Alarm Clock (Setup for Meetings, Appointments, Reminders, and Tasks) uses the Arduino Yún, which is a special Arduino with two processors. One processor runs an embedded version of Linux and is connected to the internet over wi-fi or Ethernet. The other processor uses the same chip as the Arduino Leonardo microcontroller, allowing the Yún to work with most Arduino shields and accessories. By using the Arduino Yún, this project can talk to complex web services with the Linux processor, and interface with hardware — an LCD touchscreen — on the second processor.

S.M.A.R.T. Alarm Clock – [Link]

Plug-in touchscreen makes a Raspberry Pi tablet


by Graham Prophet @ edn-europe.com:

Distributor element14 has a 7-in. Touchscreen Display for the Raspberry Pi, expanding the ecosystem of accessories, to enable users to create all-in-one integrated projects such as turning their Pi into a tablet, infotainment system or embedded project.

Compatible with Raspberry Pi 2, and Raspberry Pi 1 models B+ and A+*, the screen can be used to make ‘Internet of Things’ (IoT) devices with a visual display. Connect the Raspberry Pi, develop a Python script, and create home automation devices with touchscreen capability. A range of educational software and programs available on the Raspberry Pi will be touch enabled, making learning and programming easier.

Designed by the Raspberry Pi Foundation, the 800 × 480 display connects to the Raspberry Pi’s DSI display connector via an adapter board that handles power and signal conversion. Touchscreen drivers with support for 10-finger touch and an on-screen keyboard will be integrated into the latest Raspbian OS for full functionality without the need for a physical keyboard or mouse.

Plug-in touchscreen makes a Raspberry Pi tablet – [Link]

Riverdi TFT display with FT801 controller



If you are looking for a touchscreen LCD display for your next project you should take a look at Riverdi LCD solutions. Their aim is to produce innovative, high quality LCD solutions at affordable prices. They were kind enough to send us a sample of a FTDI FT801 controller LCD display along with their Arduino TFT shield to test out. This LCD display has a build in video engine that accelerates performance over standard TFT displays when used with low power MCUs.


Continue reading Riverdi TFT display with FT801 controller

Do you need a “Raspberry Pi” with a display? Try Armadillo 43T


Armadillo 43T integrates a 4.3″ TFT display, resistive touch panel and a single board computer with Linux OS into one compact unit.

Armadillo 43T is suitable for everyone, who needs a complete microcomputer with a display – “all in one solution”.

Armadillo 43T is driven by operating system Armadillian designed in a way to optimally use possibilities of the Armadillo processor while maintaining „Raspbian compatible“ – enabling to run majority of applications created for Raspberry Pi™. Armadillian contains “ArmadilloConfig” tool enabling setting of basic properties of a touch panel without necessity to connect external keyboard or mouse.

USB Host interface enables to connect wide range of devices like for example Ethernet or WiFi USB module (dongle). Armadillo 43T uses the same processor like Raspberry Pi™, while here – http://elinux.org/RPi_VerifiedPeripherals you can find compatible devices.

Armadillo 43T provides 13 GPIO (binary inputs/ outputs), from which 2 can be used as I2C, 5 as SPI and 2 as UART. A user can also use 2 PWM outputs, one of them shared with mono audio output connected to mini speaker. GPIO are 3.3V TTL compatible. In case, they´re configured as 5V tolerant inputs.

Armadillo 43T can be powered through DC connector, micro USB connector or through power supply pins from an external 5V DC/1A power source (typical consumption is 400 mA).

Armadillo 43T can be found in our standard stock offer. Detailed information will provide you the Armadillo 43T datasheet.

Do you need a “Raspberry Pi” with a display? Try Armadillo 43T – [Link]

DIY soldering station


MatthiasW over at DebuggingLab posted his DIY Weller station clone project, that is available at Github:

At the fpv-community.de Forum I read about a DIY Weller station. Basically an Arduino shield to drive a Weller soldering tip. As there is not much to it, the board simply contains an precision OpAmp, a power MOSFET, 2 buttons for adjusting the temperature and a display to show the current values. This design looks like a good starting point for my own advanced project. As I have lately discovered a 1,8 inch SPI TFT at banggood.com for an amazing price ( ~ 4.60 $ / 3,70 €), I started using them regularly in my projects. So I surely wanted to use it with this soldering station as well.

DIY soldering station – [Link]

Nextion: a cost-effective high-performance TFT HMI


Objective-oriented display solution, to reduce the GUI development difficulty and shorten the cycle.

Nextion is a Seamless Human Machine Interface (HMI) solution that provides a control and visualisation interface between a human and a process, machine, application or appliance. Nextion is mainly applied to IoT or consumer electronics field. It is the best solution to replace the traditional LCD and LED Nixie tube.

This solution includes hardware part – a series of TFT boards and software part – Nextion editor. Nextion TFT board uses only one serial port to do communicating. Let you get rid of the wiring trouble. We notice that most engineers spend much time in application development but get unpleasant results. In this situation, Nextion editor has mass components such as button, text, progress bar, slider, instrument panel etc. to enrich your interface design. And the drag-and-drop function ensures that you spend less time in programming, which will reduce your 99% development workloads. With the help of this WYSIWYG editor, GUI designing is a piece of cake.

Nextion: a cost-effective high-performance TFT HMI – [Link]

Immediately available TFT modules with capacitive touch panels


Simply applicable graphic platform FTDI EVE simplifies development thanks to immediately-usable display modules with capacitive touch panels.

FTDI „Embedded Video Engine“ (EVE) platform may be familiar to you from our article like „Be in plus with a graphic platform FTDI VM800P “.

FT800, as a powerful graphic platform with minimum requirements for a host MCU will meet your requirements with a high probability. Into the final application, you´ll probably use only the “heart of the system” itself – chip FT800 (supporting resistive touch panels) or chip FT801 (supporting capacitive panels) but for the beginning it´s certainly a good idea to start with a suitable module, which only needs to be switched-on and it´s possible to start writing and evaluating a SW application.

Thanks to ready-made modules series VM801 nothing prevents you from trying this platform in your application.. VM801 series modules are available in 2 variants:

  • VM801B – „basic“ module with the FT801 chip, display and accessory circuits. It is a basic module for evaluation of applications. Its main benefit is that you don´t need to design a PCB but you have a well-tried functional unit with a display and also a precise bezel.
  • VM801P – „plus“ module with the FT801 and the AtMEGA328P/16MHz microcontroller. A powerful module capable of a standalone operation, also supporting Arduino libraries.

Further, VM801 are available with 4,3“ as well as 5“ displays (480×272 px), both with capacitive touch panel. Modules VM801 are suitable for development, but also for a small-series production, when it´s simpler and cheaper to use such a module than to develop all the hardware portion. Detailed description can be found in the VM801B and VM801P datasheets.

Immediately available TFT modules with capacitive touch panels – [Link]