Tag Archives: ultrasonic

Analog Ultrasound Range Finder

FJI80JBID4CT3QW.MEDIUM

by netzener @ instructables.com:

When I started my career in control systems I was fascinated with the many different ways that machines could be interfaced to the environment they operated in. Limit switches (electrical and optical), encoders, resolvers, strain gauges, thermocouples… the control system engineer had a long list of sensors to choose from. And the list has grown even longer following successful innovations in micro machining.

Analog Ultrasound Range Finder – [Link]

Arduino LCD Project for Measuring Distance with Ultrasonic Sensor

arduino-lcd

by toptechboy.com:

In LESSON 18 you learned how to use an ultrasonic sensor to measure distance, and in LESSON 19 you learned how to connect an LCD to the arduino. In this lesson we will combine what you have learned to create a circuit for measuring distance, and displaying results on an LCD display.

You can use the schematic below to connect the circuit. If you did LESSON 19, you should already have the LCD hooked up. For more info on connecting to the LCD, and how it works, review LESSON 19. This schematic is for the LCD in the Sparkfun Inventor Kit, or similar LCD. If you have a different LCD, you will have to determine the proper connections. There are some helps in LESSON 19. If you need the ultrasonic sensor, you can pick one up HERE.

Arduino LCD Project for Measuring Distance with Ultrasonic Sensor – [Link]

Dog Repellent Ultrasonic Circuit 2

 

dog_repeller

When we hear the word “Ultrasonic” we often refer it to bats and dolphins communication. Technically, “Ultrasonic” applies to sound that is anything above the frequencies of audible sound, and includes anything over 20kHz. Frequencies used for medical diagnostic ultrasound scans extend to 10 MHz and beyond. This dog repellent ultrasonic circuit will chase away angry dogs. It comprises of a 555 timer IC, a speaker/piezoelectric and a little ferrite transformer.

The main part of this circuit is a 555 timer IC. A 555 timer IC is an integrated circuit (chip) used in a variety of timer, pulse generation, and oscillator applications. The 555 can be used to provide time delays, as an oscillator, and as a flip-flop element. Derivatives provide up to four timing circuits in one package. You can use the 555 effectively without understanding the function of each pin in detail. Frequently, the 555 is used in astable mode to generate a continuous series of pulses, but you can also use the 555 to make a one-shot or monostable circuit. The 555 can source or sink 200 mA of output current, and is capable of driving wide range of output devices.

To use this circuit adjust 4k7Ω Resistor at resonance frequency of the piezo transducer for maximum amplitude of the repeller ultrasonic sound. At 11 KHz to 22kHz this can reach a value of 10Vpp and the buzzer is a passive one (without generator).

Note: Ultrasonic frequency must be set with a dog nearby.

Component:

4k7Ω Resistor
10uF Capacitor
10nF Capacitor
1k2Ω Resistor
4k7Ω Potentiometer
Piezo
NC Push Button

Dog Repellent Ultrasonic Circuit 2 – [Link]

Arduino Ultrasonic Anemometer

20140930_223552

by lfaessler @ soldernerd.com:

My aim is to build an ultrasonic anemometer based on a Arduino Uno board. Now what’s an anemometer? That’s just a fancy name for a wind meter. I want to be able to measure both wind speed and wind direction with high accuracy. Most wind meters are of the cup or vane variety. They turn wind into mechanical motion and then measure that motion to calculate wind speed and possibly direction. An ultrasonic anemometer on the other hand sends and receives ultrasonic pulses and measures the time-of-flight. From the time-of-flight (or the time difference, depending on your approach) you can then calculate the wind speed in a given direction. Add a second pair of senders and receivers at a 90-degree angle and you get both wind speed and direction.

Arduino Ultrasonic Anemometer – [Link]

Tactile Holograms

BristolHaptic

by elektor.com:

When MC Hammer rapped ‘You can’t touch this’ little did he know of the work being carried out by a group of scientists at Bristol University. The team led by Dr Ben Long and colleagues Professor Sriram Subramanian, Sue Ann Seah and Tom Carter have produced an ultrasonic sound system able to generate 3D shapes in mid-air that can be felt.

Tactile Holograms – [Link]

Ultrasonic range finder using arduino

HC-SR04-ultrasonic-range-finder

by praveen @ circuitstoday.com:

Ultrasonic range finder using 8051 microcontroller has been already published by me in this website. This time it is an ultrasonic range finder using arduino. HC-SR04 ultrasonic range finder module is used as the sensor here. The display consists of a three digit multiplexed seven segment display. This range finder can measure up to 200 cm and has an accuracy of 1cm. There is an option for displaying the distance in inch also. Typical applications of this range finder are parking sensors, obstacle warning system, level controllers, terrain monitoring devices etc. Lets have a look at the HC-SR04 ultrasonic module first.

Ultrasonic range finder using arduino – [Link]

Arduino ultrasonic range finder

FBPCCKMHTJPA22G.LARGE

Jan_Henrik @ instructables.com writes:

In this project i want to show and explain you a range sensor with ultrasonic and a 20×04 lcd screen. I wrote the code for this project myself and added lots of comments, so that everybody can understand it and use it for other projects (maybe a light range sensor?!). It is easy to build and much more easier to program, it just requires a few cheap parts and can run on battery, for a portable rangefinder.

The maximum rated range is 500 cm, the range is measured 20 times per seccond. It is Displayed on a lcd screen which is 20×4 chars big, it has a custom start message, and it can have a custom design while measuring. It will have a backlight LED and can run on every arduino, which has I²C communication. That mean you can run it on an Arduino nano, which is very small. It also requires 5V so it has to be a 5V version of an Arduino.

Arduino ultrasonic range finder – [Link]