Tag Archives: USB

USB Adaptive Charger (2.7A per port) with Wattmeter

A 10.8A, 4 port USB charger with a wattmeter and adaptive intelligent charging.

It works by taking any DC input between 7V to 17V, from an AC/DC adapter or car adapter. It can be used anywhere with wall outlets, car power ports, lead-acid batteries, DC-output solar panels, and lithium-ion battery packs (2S, 3S, and 4S).

It then drops the voltage down to 5V and intelligently adapts to match the maximum current the device being charged would accept. We believe it is the most powerful 4-port USB charger at 10.8A. No device is throttled when every port is in use.

USB Adaptive Charger (2.7A per port) with Wattmeter – [Link]

Comma AI’s Panda is a Car Hacking Dongle for Self-Driving Possibilities

Comma.ai is a self-driving car startup founded by George Hotz, the American hacker known for unlocking the iPhone and the PlayStation 3. Comma AI who originally wanted to build self-driving car kit, canceled their initial project due to safety concerns from NHTSA but later open-source their project and has now launched a Panda, an On-Board Diagnostics (OBD) II adapter that is expected to expose a car sensor data with the hopes of turning that information for self or assisted driving application.

Panda OBD-II Dongle

Panda is a small size OBD II dongle and will plug into the port of most new cars made since 1996 with preference giving to vehicles of 2010 and above. Panda supports 3 CAN (Controller Area Network), 2 LIN (Local Interconnect Network) and 1 GMLAN (General Motor Local Area Network) for access to almost all of the sensors in most of the cars on the road. It also includes WiFi and USB port to help interface with a computer and smartphone.

With a dimension of 34 mm x 50 mm x 27 mm, Panda can read a host of data. Panda will be able to measure the car speed, location (if available), fault codes, braking force, engine speed, gas level, and many more. To help parse all that information Comma AI also launched Cabana a CAN analysis tool.

Panda can be paired with Openpilot, the company’s open-source autonomous driving software and this pairing could be used to take control of a compatible vehicle’s gas, brakes, lights, and steering.

Some Specifications of Panda dongle

  • Dimensions –  34mm x 50mm x 27mm
  • Weight: 32g
  • Car Interfaces –
    • 3x CAN
    •  2x LIN
    • 1x GMLAN
  • Connectivity – USB (with fast charging support) & WiFi
  • Software Support
    • Android and iOS chffr (getchffr.com)
    • Cabana (comma CAN analysis tool)
    • Openpilot (open source self-driving)
    • Python library (pip install pandacan)
    • SocketCAN (Linux can-utils, Wireshark)
    • Wi-Fi ELM327 (Android and iOS apps)
    • Windows J2534 (Car manufacturer tools)

According to Hotz,

“the real point of shipping Panda out to people is to create that interface that cars don’t have. We want to plug cars into computers.”

Panda is available for ordering at about $99 on the comma AI product page and a GPS with no Wi-Fi variant available for $199

Infinite Noise true random number generator

This is an Open hardware USB true random number generator coming soon on crowdsupply.com

The Infinite Noise TRNG is an affordable and secure true random number generator (TRNG) based on a modular entropy multiplier technique that continuously loops over previous random output, gathering randomness from the noise of the hardware components along the way, to generate the next random output. The simplicity of this technique makes it quite robust to common attacks like signal injection. The openness of the implementation makes it and easy to inspect and verify, as all security hardware should be!

Features & Specifications

  • Default 30 KB/second of random data
  • No firmware
  • “Whitening” implemented in the driver
  • Comes with polycarbonate enclosure
  • Immune to power supply noise and RF interference
  • Uses only stock components
  • Health monitor built into host drivers
  • Multiplatform driver support (Windows, Linux, and also ARM-support)
  • Fully open source (see GitHub repo)

USB Armory: Open Source USB Stick Computer

An open source USB stick computer for security applications.

The USB Armory is full-blown computer (800MHz ARM® processor, 512MB RAM) in a tiny form factor (65mm x 19mm x 6mm USB stick) designed from the ground up with information security applications in mind. Not only does the USB Armory have native support for many Linux distributions, it also has a completely open hardware design and a breakout prototyping header, making it a great platform on which to build other hardware.


USB Armory: Open Source USB Stick Computer – [Link]

Isolated USB to UART Converter for Arduino Pro Mini

Simple, tiny USB to UART converter with digital isolator working between 2.5V and 5V up to 3Mbaud, with the Arduino Pro mini connector.

It’s a USB to UART converter with a digital isolator at the UART side. It has a micro USB for connecting to the PC and a 6 pin header with the same pin-out of the Arduino Pro mini board.

The chip FT231XQ is used as interface between the USB and the UART protocol, while the Si8642 is used for isolate the board from the PC. This converter is very useful if you are working on some projects and worrying about short circuit with the main power supply. Because the isolator isolates the two sides therefore there is no electrically connection.


  • Original FT231XQ: Compatible with almost all the operating systems and capable of variety baud rates from 300 baud up to 3 Mbaud
  • Original Si8642BB-B-IS1: Low-Power Quad-Channel Digital Isolators with isolation rating up to 2.5kV
  • Size of 40 x 17 mm
  • 4.1 mm isolation between the two sides guarantee an electrical isolation up to 1kV
  • Working between 2.5V to 5V.
  • TX and RX LEDs indicators.
  • Micro USB connector.
  • Standard 2.54mm 6 pins female header.
  • Protected by a transparent heat shrink sleeve.

The board is live on kickstarter available for funding and has 24 days to go.

The ezPixel is an Upcoming FPGA based WS2812B Controller Board

FPGAs are field programmable gate arrays which basically means they are reconfigurable hardware chips. FPGAs have found applications in different industries and engineering fields from the defence, telecommunications to automotive and several others but little application in the maker’s world. Mostly, as a result of being largely difficult and high cost as compared to the likes of Arduino, but the introduction of the ezPixel and other similar FPGA boards is making this a possibility.

Prototype modules.

The ezPixel board, by Thomas Burke of MakerLogic, is a small size FPGA based circuit board that can be used to drive up to 32 strings of WS2812Bs, for up to 9,216 LEDs in total, a very first of its kind. These WS2812B programmable color LEDs have been a phenomenon in the maker’s world, being used in various Led Lights and creating of various Light Artworks. These popular LEDs comes in strings that can be cut to any length, and only require a single wire serial data connection to control all the lights in the string individually, and multiple strings can be stacked together to create large two-dimensional displays.

ezPixel description.

Most WS2812B controller boards can be used to control up to hundreds of these LEDs, but not thousands of them. The ezPixel board is a perfect fit for applications that use thousands of these LEDs. The ezPixel board is powered by the Intel MAX FPGA, a single chip small form factor programmable logic device with full-featured FPGA capabilities, and it’s designed to interface with other Micro-controllers or any SPI/UART host device. The ezPixel board serves as bridge between microcontrollers and long WS2812B strings. A user sets the length of each string using simple commands that are sent via the SPI or USB/UART communication link.

The following below are the features of the ezPixel:

  • WS2812B Smart Pixel Controller.
  • Up to 32 Strings can be controlled independently.
  • Up to 9216 LEDs can be controlled.
  • Communication:
    • USB/UART Interface.
    • SPI Interface.
  • Read/Write Pixel Memory.
  • FPGA – Intel MAX10M08 FPGA.
  • Dimension:
    • 1” x 3” (25mm x 76mm).
  • SPI Flash.

The ezPixel can run as a standalone display controller as a result of its serial flash memory chip, and this board is slated for a crowdfunding campaign in early 2018.

USB To 12V Boost Converter

This project provides 12V output from any USB power source, like PC USB port, USB adapter or power banks. LM2577ADJ boost converter IC is the heart of the project. The IC can handle load up to 800mA, it’s advisable to use only 200mA load on output to be on the safe side. The LM2577 are monolithic integrated circuits that provide all of the power and control functions for step-up (boost), fly back, and forward converter switching regulators. The device is available in three different output voltage versions: 12V, 15V, and adjustable. Requiring a minimum number of external components, these regulators are cost effective, and simple to use. Listed in this data sheet are a family of standard inductors and fly back transformers designed to work with these switching regulators. Included on the chip is a 3.0A NPN switch and its associated protection circuitry, consisting of current and thermal limiting, and under voltage lockout. Other features include a 52 kHz fixed-frequency oscillator that requires no external components, a soft start mode to reduce in-rush current during start-up, and current mode control for improved rejection of input voltage and output load transients.

USB To 12V Boost Converter – [Link]

Tomu – An ARM board which fits inside your USB connector

Tomu is a programmable computer that is so small that can fit entirely inside a computer’s USB port. It sticks out just a little bit, enough to allow you to press one of the two buttons on it’sy side. It also have two LED lights, to let you know what I’m up to. The project is coming soon on crowdsupply.com


  • 25 MHz ARM Cortex M0+ CPU
  • Two LEDs
  • Two capacitive-touch buttons
  • 8 kilobytes of RAM
  • 64 kilobytes of flash
  • Full and Low Speed USB

Nevma: Gesture Control for the Masses

Nevma is a simple to build, program and utilize device that translates your hand gestures into keyboard and mouse input. Just plug it in your USB port and magically wave through your presentations, documents, pictures, songs and the like. by Dimitris Platis @ instructables.com

Working at Delphi (soon Aptiv) allows me the luxury of being immersed in a high-tech and innovative environment that provides constant inspiration for creating new and exciting gadgets. One day, some colleagues mentioned gesture control being one of the recent trends in automotive. This got me thinking of ways to bring gesture control to the broader audience in an affordable and easy to use package. And thus, Nevma was born.

Nevma: Gesture Control for the Masses – [Link]

Raspberry Pi Zero Docking Hub

Add more connectivity to your Raspberry Pi Zero with this docking hub. Available on kickstarter for 16 USD and has 34 days to go.

The Pi Zero USB Docking Hub is a stackable USB Hub that comes with 5 x USB 2.0 data and charging ports, a micro USB port for power input, an RJ45 port for Ethernet, and a 3.5mm audio input/output jack. Installation would take only seconds. Just snap your Pi Zero onto the top of the docking hub station, the four pogo pins on the hub station will connect to the signal pads on your Pi. There is no soldering required!

Raspberry Pi Zero Docking Hub – [Link]