Tag Archives: USB

PopCom – Identify your COM ports

avishorp has written a small program that pops up a message whenever a serial port over USB device is plugged in, that is available on GitHub (code).

PopCom is a COM port plug-in/plug-out notifier. Whenever a USB device that emulates a COM port is connected to the computer, a pop-up will be displayed, describing the device that has been plugged in and the COM number assigned to it. This pop-up helps determining the COM number assigned to each device, a number that is required for communicating with it.

PopCom – Identify your COM ports – [Link]

Tiny-PAT – USB-C power adapter tester

A small, open, affordable USB-C power adapter tester is live on crowdsupply.

We are quickly entering the age of USB Type-C. This “jack of all trades” port is appearing in more and more new electronic devices.

USB Type-C helps to reduce reliance on proprietary power adapters and USB cables; you can move to a single, robust, and compact solution that works on all devices. USB-C is quickly replacing various USB-B and USB-A connectors and cables with a standard that is meant to be “future-proof.”

As more and more of our devices will be using USB-C power adapters, it is essential that developers and manufacturers have an easy way to test their USB-C power adapters during development and manufacturing.

That’s where the USBCEE Tiny-PAT comes in – it’s the world’s smallest, fastest, easiest, and lowest cost USB-C power adapter tester.

Tiny-PAT – USB-C power adapter tester – [Link]

OPEN MOTOR CONTROL – An open source motor controller for everyone

It is open source and based upon the ATmega32U4 microcontroller, and provided with drivers for two DC brush motors and a stepper motor. It receives commands via USB or serial ports, or via the I²C bus.

For those dealing with robotics, one of the problems to solve is the management of the motors used for the traction, that is to say: how to correctly power the motors needed in order to make your robot advance. If you work with Arduino, the first and immediate solution is to use a shield. Several of them can be found available for sale, from the simplest ones that allow to control separately the two small DC motors, to the most advanced ones that are able to measure the current drawn as well. Regardless of the manufacturer, the shields are all based on the usage of a power driver (usually the L298), that is directly interfaced to Arduino’s PWM outputs, and encircled by a few other components. Surely the usage of a shield is a valid solution, but then we need to use at least four Arduino outputs: usually two to adjust the speed and two for the direction. If, on the other hand, you use a generic microcontroller, or a stand-alone Atmel chip, or a board that is different from Arduino, things get a bit more complicated, since on the market it is difficult to find drivers with a more flexible interface, and the price starts to rise quickly.  If you then have the need to command two motors, things get very complicated, even for those using an Arduino board, because problems arise both on the hardware and on the device programming point of view.

[source: www.open-electronics.org]

uArt- A small Solution For a Big Problem

Coming soon to Crowd Supply is the ultimate USB-UART converter. μArt is a device that offers safe and reliable USB-to UART conversion. The voltage levels, electric potentials, and communication speeds are no longer a concern, and it can be used for data exchange or for Programming Arduino or ESP. μArt was designed for enthusiasts and professionals and for users in general who want to save money, time, and hardware without compromising quality.

The device has the size of two coins and was designed to tolerate user’s mistakes without getting damaged or damaging the connected hardware.

The device features a working voltage of 1.8 to 5.4, up to 3 Mbaud transfer speed, complete galvanic isolation, reverse polarity protection, pullups on all inputs, voltage autosensing, cross platform support, GPIO pins, LEDs etc. The complete features can be found on this website.

All characteristics mentioned before make it perfect for working with computers, microcontrollers, FPGAs, and low power electronics. Also, it is fast enough for transferring high quality stereo audio.

The safety features protect your computer and other hardware, and it protects the device even if you mix up the power pins.

μArt also includes characteristics that make it more efficient. It helps avoid noise because of the filters and isolation and the converter will automatically use the correct voltage levels for UART communication.

Regarding design, the device its very user friendly and many features were added to avoid mistakes. For example, the four LEDs indicate power, RX/TX activity and feedback about the connected device, it also has readable labels which minimize user errors. It is compact and comes with a transparent case that give mechanical and electrical protection. Finally, μArt has cross platform support with drivers for Windows, Linux, MacOS etc.

All of this in a small device that provides reliable and safe functionality. The device will probably be a success when it launches in crowd supply, but we have yet to see how it performs and all the applications that it will have. There is still no date for the launch, but you can sign up to be notified when it does in the crowd supply website.

UPDATE 08/08/2018: The campaign is launched on crowdsupply and back is starting from 32USD.

Firefly’s Latest Core-PX3-SEJ COM Runs Ubuntu or Android

Firefly has launched a new SODIMM-style, 67.6 x 40mm Core-PX3-SEJ module that runs Android 5.1 or Ubuntu 15.04 on a Rockchip PX3-SE. It’s a new 1.3GHz, quad-core, Cortex-A7 SoC. The 40 USD module is available in a 1GB RAM/8GB eMMC configuration on a $120, 117 x 85mm Firefly-PX3-SE development board. Other memory configurations may also be available soon.

Firefly Core-PX3-SEJ module
Firefly Core-PX3-SEJ module

The PX3-SE SoC gives the module a sandwich-style dev board and increases the operating temperature to -20 to 80 range. The Core-PX3-SEJ module is praised for its anti-corrosion gold finger expansion connector, and the dev board for its “double stud fixed” design.

Rockchip’s PX3-SE SoC was announced in May 2017. The main target of this SoC is Linux and Android-driven “mobile vehicle interconnect solutions.” The quad-A7 SoC implements a Mali-400 GPU and supports HD video.

The Firefly-PX3-SE board’s 2.4GHz WiFi and Bluetooth 4.0 are supplied separately from the compact Core-PX3-SEJ COM. Despite the lack of 4K support, there are a numerous media interfaces, including a variety of audio features. There are HDMI, CVBS, MIPI-DSI or LVDS, and a DVP camera interface. Analog, SPDIF, and I2S audio connections are available along with an onboard mic and a “phone” I/O port.

The Firefly-PX3-SE board is further provided with a GbE port, 4x USB 2.0 host ports, a micro-USB OTG port, and an 84-pin expansion header. RTC, debug, and IR are also onboard.

Specifications summary for the Firefly-PX3-SE development board with Core-PX3-SEJ module:

  • Processor : Rockchip PX3-SE (4x Cortex-A7 cores @ 1.3GHz); Mali-400 MP2 GPU
  • Memory:
    • 256MB, 512MB, 1GB, or 2GB DDR3 RAM (via Core-PX3-SEJ)
    • 4GB to 64GB eMMC flash (via Core-PX3-SEJ) with 4GB and 8GB default SKUs
    • MicroSD slot
  • Wireless:
    • 2.4GHz 802.11b/g/n with antenna
    • Bluetooth 4.0 with BLE
  • Networking: Gigabit Ethernet port (Realtek RTL8211E)
  • Display & media:
    • HDMI port with audio
    • MIPI-DSI or LVDS LCD interface
    • CVBS with video and audio
    • DVP camera interface for up to 5MP
    • 3.5mm analog audio input jack
    • SPDIF optical output
    • Microphone input
    • I2S audio I/O
    • A phone I/O interface
  • Other I/O:
    • 4x USB 2.0 host ports
    • Micro-USB 2.0 with OTG
    • Serial console debug
    • 84-pin expansion header (MIPI, LVDS, PWM, SPI, UART, ADC, I2C, I2S, GPIO)
  • Other features: RTC with battery; IR receiver; power, reset, recover buttons; acrylic rack kit
  • Power: 5V, 2A (via DC jack); PMU (via Core-PX3-SEJ)
  • Dimensions: 117 x 85mm (with 67.6 x 40mm integrated COM)
  • OS Support: Android 5.1; Ubuntu 15.04; includes Linux Buildroot/Qt

The Core-PX3-SEJ module and Firefly-PX3-SE development board are available for $80 and $140 (including module), respectively, plus shipping. More information may be found at Firefly’s Core-PX3-SEJ and Firefly-PX3-SE shopping pages.

CANable: the open source USB to CAN adapter

An open-source USB to CAN adapter:

It supports CAN bit-rates of up to 1 Mbit/s. The product comes with an open-source SocketCAN driver software. It features a Micro-USB connector and a 4-pin screw terminal with CAN_H, CAN_L, 5-V supply, and ground. The CANable device is a hardware clone of Eric Evenchick’s CANtact project, an open-source USB-to-CAN hardware adapter

CANable: the open source USB to CAN adapter – [Link]

BML GPIO-14 USB Board for PCs

BML project for using a $2 FTDI FT260Q for adding 14 bits of GPIO to any PC via USB with no device drivers required.

Ever miss the simple days of using a PC’s LPT1 parallel port to bit-bang GPIO over 8 output pins and 4 input pins of the DB-25 connector? I sure do. My first design project as a BSEE graduate in 1993 was to design a LPT1 controlled test fixture for the Motorola MDT-9100-T data terminal (shown below). Those were the days. By multiplexing 12 parallel port pins into 74HC dip CMOS latches and transceivers my test jig tested all the IO signals of the MDT-9100s 386sx motherboard. All of the diagnostic software could be written in C on my Windows 3.1 desktop thanx to this versatile interface. Those were the glorious simple days of computing. Sigh…. Then USB came along and killed the wonderfully easy parallel port interface.

BML GPIO-14 USB Board for PCs – [Link]

Micro Soldering Station for 10$

Transform a cheap USB soldering iron in a powerfull Active tip Soldering Station.

With almost no thermal capacity this station regulates the tip’s temperature instantaneously. Solder larger thermal mass with ease, it’s magic.

Micro Soldering Station for 10$ – [Link]

Renesas Develops RJ45 Ethernet Socket With Entire Ethernet Controller Embedded Into It

Renesas Electronics Corporation, a significant supplier of advanced semiconductor solutions, announced its latest industrial Ethernet module solution, the I-RJ45. It combines a single- or dual-port RJ45 connector and simplifies integration for industrial Ethernet by supporting various industrial network applications including sensors and transmitters, gateways, operator terminals and remote I/O.

Renesas RJ45 Ethernet Module
Renesas RJ45 Ethernet Module

This new device is an intelligent RJ45 module that comes with specialized embedded software that supports multiple industrial Ethernet protocol stacks. The software package and sample codes provide system manufacturers with a complete set of tools and frameworks to build their application. This helps to prototype systems, reducing the time needed for industrial network protocol integration. The modules are 50 x 17.5 x 12mm (single) and 50 x 35 x 12mm (dual).

With a general Application Programmable Interface (API), the application can easily be connected to the protocol software. It offers a seamless integration path to other Renesas ASSP solutions. The single-port version of the RJ45 module is based on the RX64M microcontroller (MCU) Group and the dual-port module solution includes the R-IN32M3 industrial Ethernet communication chip.

Renesas also offers a solution kit version of the module that consists of a single or dual-port industrial Ethernet module attached to an adapter board for development. This adapter board enhances the module to connect with Arduino and Pmod interfaces, which enables it to connect to other Renesas MCU development boards including Renesas Synergy™ and RX. The Ethernet module solution kit also includes a quick start-up guide, a USB cable and a CD with software and documentation.

Samples of the I-RJ45 industrial Ethernet module solution are now available worldwide. The mass production is scheduled to begin in Q3, 2018. The industrial Ethernet module solution kit may be available in April 2018 and projected price of €299.00 per kit.

More information is available at the product page of Renesas.

OSD3358-SM-RED – A Reference, Evaluation, And Development Board From Octavo Systems

The OSD3358-SM-RED from Octavo Systems is a reference, evaluation, and development board for the OSD335x-SM series of System-in-Package (SiP) devices. It is powered by a 1 GHz processor, ADC, and 1 GB of DDR2 RAM into an enclosure of the size of a coin.

OSD3358-SM-RED single-board computer

The SiP needs a PCB, along with components like an Ethernet jack, power supply, IO pins, and USB sockets to communicate with the other complimentary electronic parts. These boards include several power options, including a micro-USB connector, barrel jack, and solder points for battery usage. Ethernet and USB connectors are included, along with expansion connectors setup so that BeagleBone Black Capes can be connected directly. Finally, a 9-axis IMU, barometer, and temperature sensor are included. Data from sensors can be collected directly without the help of extra hardware or software.

This board is longer and slightly wider than a Raspberry Pi, at an exact dimension of 108 x 54 mm. It’s also thicker at 32 mm due to the decision to mount the Ethernet jack on top of the two USB ports. A micro-SD card slot is included, though WiFi capability is not provided. For internet connectivity, the user needs to rely on wired or dongle connection.

It comes pre-loaded with a Debian Linux distribution, complete with drivers for the onboard sensors already available. It can also boot off of the SD card to load other Operating Systems. This board can be used in one of three ways: as a standalone device, a USB client, or using a UART port as a Linux terminal. In the standalone case, the user simply connects the micro-USB connector to an appropriate power source, then to a monitor via a micro-HDMI to HDMI adapter. Once booted up, the screen goes to a minimal Linux install, allowing the user to access a web browser, terminal, and other necessary tools that a developer can build upon.

At a cost of $199, this board wouldn’t be an appropriate substitute for a Raspberry Pi or BeagleBone in standalone situations, but it will certainly be useful for a professional upgrade to OSD335x-SM SiPs.