Jump to content
Electronics-Lab.com Community

Connecting 2 voltage sources power supplies together to same end load resistance, to increase final voltage.


Recommended Posts

AI answer to question of combining 2 power sources together in the same time to electrical load, such as for instance firing spark plug as electrolysis with small electrodes requiring much higher voltage.
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
How well is the superimposition of 110 volts low current separate source, over low volts high current circuit to resistor load? This is to increase voltage for the second source, because a high wattage single source power supply at 110v is not available.
ChatGPT

Superimposing a 110V low current source over a low voltage high current circuit to a resistor load to increase the voltage for the second source is a challenging approach and is generally not recommended due to practical and safety concerns. However, theoretically, it can be considered. Here’s an analysis and a method to achieve this in a controlled manner:
Conceptual Analysis:

    Voltage Addition:
        When combining a 110V low current source with a low voltage high current source, the total voltage across the resistor will be a combination of the two sources. If the sources are in series, their voltages will add up.

    Current Flow:
        The current through the resistor will be determined by the combined voltage and the resistor’s value. The resistor must handle the total power dissipation.

    Isolation and Compatibility:
        The sources must be isolated properly to prevent damage and ensure they work together. This can involve using transformers for AC sources or proper DC isolation techniques.

Practical Approach:

    Using Transformers (for AC sources):
        If the 110V source is AC, use a step-down transformer to reduce the voltage to a safer level that can be combined with the low voltage DC source.
        Rectify the AC to DC if needed to match the DC source.

    Series Connection (for DC sources):
        Connect the low voltage high current DC source in series with the step-down transformed and rectified DC source.
        Ensure the polarities are matched correctly to add the voltages.

Example Scenario:

Let’s consider:

    Source 1: 110V AC, low current (0.5A)
    Source 2: 12V DC, high current (10A)
    Resistor Load: 10 ohms

Step-by-Step Process:

    Step-Down Transformer:
        Use a transformer to step down 110V AC to a lower AC voltage, say 10V AC.

    Rectification:
        Rectify the 10V AC to obtain 10V DC.

    Series Combination:
        Combine the rectified 10V DC with the 12V DC source to get a total of 22V DC.

    Calculate Current:
        The current through the resistor: I=22V10Ω=2.2AI=10Ω22V=2.2A.

    Power Dissipation:
        Ensure the resistor can handle the power dissipation: P=V×I=22V×2.2A=48.4WP=V×I=22V×2.2A=48.4W.

Alternative Method:

DC-DC Converter:

    Input: Use a DC-DC converter to boost the 12V DC to a higher voltage.
    Output: Adjust the output voltage to the desired level (e.g., 22V DC).
    Current Management: The converter will manage the current draw and provide the necessary output current.

Conclusion:

While theoretically possible, superimposing a 110V low current source over a low voltage high current circuit to a resistor load is complex and risky. The primary concerns are safety, compatibility, and the practical challenges of combining different voltage sources. Using a transformer and rectifier to step down and convert the voltage, followed by combining the sources in series, can work, but it requires careful design and isolation.

A more practical and safer approach would be to use a DC-DC converter to boost the voltage from the low voltage high current source to the desired level. This method offers better control, efficiency, and safety.
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
The triple coils assembly of S1R9A9M9 , in 2008, has 5 loops turns of high voltage ignition volts that HAS INDUCTION of 100 volts into the 12v battery line, 7 turns coil,,(in series)  going to the spark plug of the Briggs 18HP mower engine. The old web site had ALSO said they showed a car fender test with 60 turns wire over spark plug cable . This also was to increase the voltage in the outer line separate power source, as (was assumed) also going to spark plug. These 2  increased voltage methods were assumed, since the web forum had no statements in any order, or parts list for conversion of engine to water in carburetor. (hydrogen gas + water vapor pressure) I believe this is how it was done on the previous cars and mower engine conversions. Ebay sells miniature isolated Inverter boards, low wattage,  for AC+DC 120v capable to use as IN SERIES with main low voltage source , -- rather than dealing with the high voltage line. Nathren had said -- that other design coils would work also.

Link to comment
Share on other sites


Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

Loading...
×
  • Create New...