NCV1124

Dual Variable－Reluctance Sensor Interface IC

The NCV1124 is a monolithic integrated circuit designed primarily to condition signals from sensors used to monitor rotating parts．

The NCV1124 is a dual channel device．Each of the two identical channels interfaces with a variable－reluctance sensor，and continuously compares the sensor output signal to a user－programmable internal reference．An alternating input signal of appropriate amplitude at IN1 or IN2 will result in a rectangular waveform at the corresponding OUT terminal，suitable for interface to either standard microprocessors or standard logic families．

A diagnostic input，common to both channels，provides a means to test for degradation or loss of the physical connector to both sensors．

Typical Applications

－Anti－Skid Braking and Traction Control
－Vehicle Stability Control
－Drive Belt Slippage Detection
－Crankshaft／Camshaft Position Sensing

Features

－Two Independent Channels
－Internal Hysteresis
－Built－In Diagnostic Mode
－Designed to Work from a $5.0 \mathrm{~V} \pm 10 \%$ Supply
－Site and Control for Automotive Applications
－ $\mathrm{Pb}-$ Free Packages are Available

Figure 1．Block Diagram

ON Semiconductor ${ }^{\text {® }}$
http：／／onsemi．com

SO－8 CASE 751

MARKING DIAGRAM
8 月 В В Н
V1124 ALYW4

1甘日甘
V1124＝Device Code

A＝Assembly Location
L＝Wafer Lot
Y＝Year
W＝Work Week
－＝Pb－Free Package

PIN CONNECTIONS

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 3 of this data sheet．

MAXIMUM RATINGS

Rating	Value	Unit
Storage Temperature Range	-65 to 150	${ }^{\circ} \mathrm{C}$
Ambient Operating Temperature	-40 to 125	${ }^{\circ} \mathrm{C}$
Supply Voltage Range (continuous)	-0.3 to 7.0	V
Input Voltage Range (at any input, R1 $=$ R2 $=22 \mathrm{k})$	-250 to 250	V
Maximum Junction Temperature	150	${ }^{\circ} \mathrm{C}$
ESD Susceptibility (Human Body Model)	2.0	kV
Lead Temperature Soldering:	Reflow: (SMD styles only) (Note 1$)$	240 peak

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. 60 second maximum above $183^{\circ} \mathrm{C}$.

ELECTRICAL CHARACTERISTICS (4.5 $\mathrm{V}<\mathrm{V}_{\mathrm{CC}}<5.5 \mathrm{~V},-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<125^{\circ} \mathrm{C}, \mathrm{V}_{\text {DIAG }}=0$; unless otherwise specified.)

Characteristic	Test Conditions	Min	Typ	Max	Unit

$V_{C C}$ SUPPLY

Operating Current Supply	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	-	-	5.0	mA

Sensor Inputs

Input Threshold - Positive	$\begin{aligned} & V_{\text {DIAG }}=\text { Low } \\ & V_{\text {DIAG }}=H i g h \end{aligned}$	$\begin{aligned} & 135 \\ & 135 \end{aligned}$	$\begin{aligned} & 160 \\ & 160 \end{aligned}$	$\begin{aligned} & 185 \\ & 185 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
Input Threshold - Negative	$\begin{aligned} & V_{\text {DIAG }}=L o w \\ & V_{\text {DIAG }}=H i g h \end{aligned}$	$\begin{gathered} -185 \\ 135 \end{gathered}$	$\begin{gathered} -160 \\ 160 \end{gathered}$	$\begin{gathered} -135 \\ 185 \end{gathered}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
Input Bias Current (INP1, INP2)	$\mathrm{V}_{\text {IN }}=0.336 \mathrm{~V}$	-16	-11	-6.0	$\mu \mathrm{A}$
Input Bias Current (DIAG)	$V_{\text {DIAG }}=0 \mathrm{~V}$	-	-	1.0	$\mu \mathrm{A}$
Input Bias Current Factor (K_{I}) $\left(\mathrm{IN}_{\text {Adj }}=\mathrm{INP} \times \mathrm{K}_{\mathrm{I}}\right)$	$\begin{aligned} & \mathrm{V}_{\mathbb{I N}}=0.336 \mathrm{~V}, \mathrm{~V}_{\text {DIAG }}=\text { Low } \\ & \mathrm{V}_{\mathrm{IN}}=0.336 \mathrm{~V}, \mathrm{~V}_{\text {DIAG }}=\text { High } \end{aligned}$	152	$\begin{aligned} & 100 \\ & 155 \end{aligned}$	157	$\begin{aligned} & \text { \%INP } \\ & \text { \%INP } \end{aligned}$
Bias Current Matching	INP1 or INP2 to $\mathrm{IN}_{\text {Adj }}, \mathrm{V}_{\mathbb{I N}}=0.336 \mathrm{~V}$	-1.0	0	1.0	$\mu \mathrm{A}$
Input Clamp - Negative	$\begin{aligned} & \mathrm{I}_{\mathrm{N}}=-50 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{N}}=-12 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & -0.5 \\ & -0.5 \end{aligned}$	$\begin{aligned} & -0.25 \\ & -0.30 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$
Input Clamp - Positive	$\mathrm{I}_{\mathrm{N}}=+12 \mathrm{~mA}$	5.0	7.0	9.8	V
Output Low Voltage	$\mathrm{l}_{\text {OUT }}=1.6 \mathrm{~mA}$	-	0.2	0.4	V
Output High Voltage	I ${ }_{\text {OUT }}=-1.6 \mathrm{~mA}$	$V_{C C}-0.5$	$\mathrm{V}_{C C}-0.2$	-	V
Mode Change Time Delay	-	0	-	20	$\mu \mathrm{S}$
Input to Output Delay	lout $=1.0 \mathrm{~mA}$	-	1.0	20	$\mu \mathrm{s}$
Output Rise Time	$\mathrm{C}_{\text {LOAD }}=30 \mathrm{pF}$	-	0.5	2.0	$\mu \mathrm{s}$
Output Fall Time	$\mathrm{C}_{\text {LOAD }}=30 \mathrm{pF}$	-	0.05	2.0	us
Open-Sensor Positive Threshold	$\mathrm{V}_{\text {DIAG }}=$ High, $\mathrm{R}_{\text {IN(Adj) }}=40$ k. Note 2	29.4	54	86.9	k Ω

Logic Inputs

DIAG Input Low Threshold	-	-	-	$0.2 \times \mathrm{V}_{\mathrm{CC}}$	V
DIAG Input High Threshold	-	$0.7 \times \mathrm{V}_{\mathrm{CC}}$	-	-	V
DIAG Input Resistance	$\mathrm{V}_{\mathrm{IN}}=0.3 \times \mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	8.0	22	70	$\mathrm{k} \Omega$
	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	8.0	22	70	$\mathrm{k} \Omega$

2. This parameter is guaranteed by design, but not parametrically tested in production.

PACKAGE PIN DESCRIPTION

PIN \# SO-8	PIN SYMBOL	
1	IN $_{\text {Adj }}$	External resistor to ground that sets the trip levels of both channels. Functions for both diagnostic and normal mode
2	IN1	Input to channel 1
3	IN2	Input to channel 2
4	GND	Ground
5	DIAG	Diagnostic mode switch. Normal mode is low
6	OUT2	Output of channel 2
7	OUT1	Output of channel 1
8	VCC	Positive 5.0 volt supply input

ORDERING INFORMATION

Device	Package	Shipping ${ }^{\dagger}$
NCV1124DG	SO-8 NB (Pb-Free)	98 Units / Rail
NCV1124DR2G	SO-8 NB (Pb-Free)	2500 Units / Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

Figure 2. Application Diagram

THEORY OF OPERATION

NORMAL OPERATION

Figure 2 shows one channel of the NCV1124 along with the necessary external components. Both channels share the $\mathrm{IN}_{\text {Adj }}$ pin as the negative input to a comparator. A brief description of the components is as follows:
$\mathbf{V}_{\text {RS }}$ - Ideal sinusoidal, ground referenced, sensor output - amplitude usually increases with frequency, depending on loading.
$\mathbf{R}_{\mathbf{R S}}$ - Source impedance of sensor.
$\mathbf{R 1} / \mathbf{R}_{\text {Adj }}$ - External resistors for current limiting and biasing.

INP1/IN $\mathbf{N d j}$ - Internal current sources that determine trip points via R1/R $\mathrm{R}_{\text {Ajj }}$.

COMP1 - Internal comparator with built-in hysteresis set at 160 mV .

OUT1 - Output $0 \mathrm{~V}-5.0 \mathrm{~V}$ square wave with the same frequency as V_{RS}.

By inspection, the voltage at the (+) and (-) terminals of COMP1 with $\mathrm{V}_{\mathrm{RS}}=0 \mathrm{~V}$ are:

$$
\begin{gather*}
\mathrm{V}^{+}=\operatorname{INP} 1\left(\mathrm{R} 1+\mathrm{R}_{\mathrm{RS}}\right) \tag{1}\\
\mathrm{V}^{-}=\mathrm{IN}_{\mathrm{Adj}} \times \mathrm{R}_{\mathrm{Adj}} \tag{2}
\end{gather*}
$$

As $V_{\text {RS }}$ begins to rise and fall, it will be superimposed on the DC biased voltage at V^{+}.

$$
\begin{equation*}
V^{+}=\operatorname{INP} 1(R 1+R R S)+V_{R S} \tag{3}
\end{equation*}
$$

To get comparator COMP1 to trip, the following condition is needed when crossing in the positive direction,

$$
\begin{equation*}
\mathrm{V}+>\mathrm{V}-+\mathrm{V} \mathrm{HYS} \tag{4}
\end{equation*}
$$

($\mathrm{V}_{\mathrm{HYS}}$ is the built-in hysteresis set to 160 mV), or when crossing in the negative direction,

$$
\begin{equation*}
\mathrm{V}^{+}<\mathrm{V}^{-}-\mathrm{V}_{\mathrm{HYS}} \tag{5}
\end{equation*}
$$

Combining equations 2,3 , and 4 , we get:

$$
\begin{equation*}
\text { INP1(R1 + RRS) }+V_{R S}>I_{A d j} \times R_{A d j}+V_{H Y S} \tag{6}
\end{equation*}
$$

therefore,

$$
\begin{equation*}
\mathrm{V}_{\mathrm{RS}}(+\mathrm{TRP})<\mathrm{IN}_{\mathrm{Adj}} \times \mathrm{R}_{\text {Adj }}-\operatorname{INP} 1\left(\mathrm{R} 1+\mathrm{R}_{\mathrm{RS}}\right)+\mathrm{V}_{\mathrm{H}} \mathrm{YS} \tag{7}
\end{equation*}
$$

It should be evident that tripping on the negative side is:
$\mathrm{V}_{\mathrm{RS}}(-\mathrm{TRP})<\mathrm{IN}_{\text {Adj }} \times \mathrm{R}_{\text {Adj }}-\operatorname{INP1}\left(\mathrm{R} 1+\mathrm{R}_{\mathrm{RS}}\right)-\mathrm{V}_{\mathrm{HYS}}$

In normal mode,

$$
\begin{equation*}
\operatorname{INP} 1=\mathrm{IN}_{\mathrm{Adj}} \tag{9}
\end{equation*}
$$

We can now re-write equation (7) as:

$$
\begin{equation*}
\mathrm{V}_{\mathrm{RS}(+\mathrm{TR})}>\operatorname{INP1(R_{Adj}-R1-R_{RS})+V_{HYS},~} \tag{10}
\end{equation*}
$$

By making

$$
\begin{equation*}
R_{\text {Adj }}=R 1+R_{R S} \tag{11}
\end{equation*}
$$

you can detect signals with as little amplitude as $\mathrm{V}_{\text {HYS }}$.
A design example is given in the applications section.

OPEN SENSOR PROTECTION

The NCV1124 has a DIAG pin that when pulled high (5.0 V), will increase the $\mathrm{IN}_{\text {Adj }}$ current source by roughly 50%.

Equation (7) shows that a larger $\mathrm{V}_{\mathrm{RS}(+\mathrm{TRP})}$ voltage will be needed to trip comparator COMP1. However, if no V_{RS} signal is present, then we can use equations 1,2 , and 4 (equation 5 does not apply in this mode) to get:

$$
\begin{equation*}
\text { INP1(R1 + RRS) }>\operatorname{INP1} \times \mathrm{K}_{\mathrm{I}} \times \mathrm{R}_{\text {Adj }}+\mathrm{V}_{\mathrm{HYS}} \tag{12}
\end{equation*}
$$

Since R_{RS} is the only unknown variable we can solve for R_{RS},

$$
\begin{equation*}
\mathrm{R}_{\mathrm{RS}}=\frac{\mathrm{INP} 1 \times \mathrm{K}_{\mathrm{I}} \times \mathrm{R}_{\mathrm{Adj}}+\mathrm{V}_{\mathrm{HYS}}}{\mathrm{INP} 1}-\mathrm{R} 1 \tag{13}
\end{equation*}
$$

Equation (13) shows that if the output switches states when entering the diag mode with $\mathrm{V}_{\mathrm{RS}}=0$, the sensor impedance must be greater than the above calculated value. This can be very useful in diagnosing intermittent sensor.

INPUT PROTECTION

As shown in Figure 2, an active clamp is provided on each input to limit the voltage on the input pin and prevent substrate current injection. The clamp is specified to handle $\pm 12 \mathrm{~mA}$. This puts an upper limit on the amplitude of the sensor output. For example, if R1 $=20 \mathrm{k}$, then

$$
\mathrm{V}_{\mathrm{RS}}(\mathrm{MAX})=20 \mathrm{k} \times 12 \mathrm{~mA}=240 \mathrm{~V}
$$

Therefore, the $\mathrm{V}_{\mathrm{RS}(\mathrm{pk}-\mathrm{pk})}$ voltage can be as high as 480 V .
The NCV1124 will typically run at a frequency up to 1.8 MHz if the input signal does not activate the positive or negative input clamps. Frequency performance will be lower when the positive or negative clamps are active. Typical performance will be up to a frequency of 680 kHz with the clamps active.

CIRCUIT DESCRIPTION

Figure 3 shows the part operating near the minimum input thresholds. As the sin wave input threshold is increased, the low side clamps become active (Figure 4). Increasing the amplitude further (Figure 5), the high-side clamp becomes active. These internal clamps allow for voltages up to -250 V and 250 V on the sensor side of the setup (with R1 = R2 = 22 k) (reference the diagram page 1).

Figure 6 shows the effect using the diagnostic (DIAG) function has on the circuit. The input threshold (negative) is switched from a threshold of -160 mV to +160 mV when DIAG goes from a low to a high. There is no hysteresis when DIAG is high.

Figure 3. Minimum Threshold Operation

Figure 4. Low-Side Clamp

Figure 5. Low- and High-Side Clamps

Figure 6. Diagnostic Operation

APPLICATION INFORMATION

Referring to Figure 2, the following will be a design example given these system requirements:

$$
\begin{gathered}
\mathrm{R}_{\mathrm{RS}}=1.5 \mathrm{k} \Omega(>12 \mathrm{k} \Omega \text { is considered open }) \\
\mathrm{V}_{\mathrm{RS}}(\mathrm{MAX})=120 \mathrm{~V}_{\mathrm{pk}} \\
\mathrm{~V}_{\mathrm{RS}}(\mathrm{MIN})=250 \mathrm{~m} \mathrm{~V}_{\mathrm{pk}} \\
\mathrm{FVRS}=10 \mathrm{kHz} @ \mathrm{~V}_{\mathrm{RS}}(\mathrm{MIN})=40 \mathrm{~V}_{\mathrm{pk}-\mathrm{pk}}
\end{gathered}
$$

1. Determine tradeoff between R1 value and power

 rating. (use $1 / 2$ watt package)$$
\mathrm{PD}=\frac{\left(\frac{120}{\sqrt{2}}\right)^{2}}{\mathrm{R} 1}<1 / 2 \mathrm{~W}
$$

Set R1 = 15 k . (The clamp current will then be $120 / 15 \mathrm{k}$ $=8.0 \mathrm{~mA}$, which is less than the 12 mA limit.)

2. Determine $\mathbf{R}_{\text {Adj }}$

Set $\mathrm{R}_{\text {Adj }}$ as close to $\mathrm{R} 1+\mathrm{R}_{\mathrm{RS}}$ as possible.
Therefore, $\mathrm{R}_{\mathrm{Adj}}=17 \mathrm{k}$.

3. Determine $\mathbf{V}_{\mathrm{RS}(+\mathrm{TRP})}$ using equation (7).

$$
\begin{aligned}
\mathrm{V}_{\mathrm{RS}(+\mathrm{TRP})}= & 11 \mu \mathrm{~A} \times 17 \mathrm{k}-11 \mu \mathrm{~A}(15 \mathrm{k}+1.5 \mathrm{k})+160 \mathrm{r} \\
& \mathrm{~V}_{\mathrm{RS}}(+\mathrm{TRP})=166 \mathrm{mV} \text { typical } \\
& \text { (easily meets } 250 \mathrm{mV} \text { minimum })
\end{aligned}
$$

4. Calculate worst case $\mathrm{V}_{\mathrm{RS}(+ \text { TRP) }}$

Examination of equation (7) and the spec reveals the worst case trip voltage will occur when:

$$
\begin{aligned}
& \mathrm{V}_{\text {HYS }}=180 \mathrm{mV} \\
& \mathrm{IN} \mathrm{Adj}_{\mathrm{Adj}}=16 \mu \mathrm{~A} \\
& \mathrm{INP1}=15 \mu \mathrm{~A} \\
& \mathrm{R} 1=14.25 \mathrm{k}(5 \% \text { low }) \\
& \mathrm{R}_{\text {Adj }}=17.85 \mathrm{k}(5 \% \text { High }) \\
& \begin{aligned}
\mathrm{V}_{\mathrm{RS}(+) \mathrm{MAX}}= & 16 \mu \mathrm{~A}(17.85 \mathrm{k}) \\
& -15 \mu \mathrm{~A}(14.25 \mathrm{k}+1.5 \mathrm{k})+180 \mathrm{mV} \\
= & 229 \mathrm{mV}
\end{aligned}
\end{aligned}
$$

which is still less than the 250 mV minimum amplitude of the input.

5. Calculate C1 for low pass filtering

Since the sensor guarantees $40 \mathrm{~V}_{\mathrm{pk}-\mathrm{pk}} @ 10 \mathrm{kHz}$, a low pass filter using R1 and C1 can be used to eliminate high frequency noise without affecting system performance.

$$
\text { Gain Reduction }=\frac{0.29 \mathrm{~V}}{20 \mathrm{~V}}=0.0145=-36.7 \mathrm{~dB}
$$

Therefore, a cut-off frequency, f_{C}, of 145 Hz could be used.

$$
\mathrm{C} 1 \leq \frac{1}{2 \pi f \mathrm{CR} 1} \leq 0.07 \mu \mathrm{~F}
$$

Set $\mathrm{C} 1=0.047 \mu \mathrm{~F}$.
6. Calculate the minimum $R_{\text {RS }}$ that will be indicated as an open circuit. (DIAG $=5.0 \mathrm{~V}$)

Rearranging equation (7) gives

$$
\mathrm{RRS}=\frac{\left[\begin{array}{l}
\mathrm{V}_{\mathrm{HYS}}+\left[\mathrm{INP} 1 \times \mathrm{K}_{\mathrm{I}} \times \mathrm{R}_{\text {Adj }}\right] \\
-\mathrm{V}_{\mathrm{RS}}(+\mathrm{TRP})
\end{array}\right]}{\mathrm{INP} 1}-\mathrm{R} 1
$$

But, $\mathrm{V}_{\mathrm{RS}}=0$ during this test, so it drops out.
Using the following as worst case Low and High:

	Worst Case Low (RRS)	Worst Case High (R $\mathbf{R S}$)
$\mathrm{IN}_{\text {Adj }}$	$23.6 \mu \mathrm{~A}=15 \mu \mathrm{~A} \times 1.57$	$10.7 \mu \mathrm{~A}=7.0 \mu \mathrm{~A} \times 1.53$
$\mathrm{R}_{\text {Adj }}$	16.15 k	17.85 k
$\mathrm{V}_{\mathrm{HYS}}$	135 mV	185 mV
INP1	$16 \mu \mathrm{~A}$	$6.0 \mu \mathrm{~A}$
R1	15.75 k	14.25 k
K_{I}	1.57	1.53

$$
\begin{aligned}
\mathrm{R}_{\mathrm{RS}} & =\frac{135 \mathrm{mV}+23.6 \mu \mathrm{~A} \times 16.15 \mathrm{k}}{16 \mu \mathrm{~A}}-15.75 \mathrm{k} \\
& =16.5 \mathrm{k}
\end{aligned}
$$

Therefore,

$$
\operatorname{RRS}(\mathrm{MIN})=16.5 \mathrm{k} \text { (meets } 12 \mathrm{k} \text { system spec) }
$$

and,

$$
\begin{aligned}
\operatorname{RRS}(\mathrm{MAX}) & =\frac{185 \mathrm{mV}+10.7 \mu \mathrm{~A} \times 17.85 \mathrm{k}}{6.0 \mu \mathrm{~A}}-14.25 \mathrm{k} \\
& =48.4 \mathrm{k}
\end{aligned}
$$

SOIC-8 NB
CASE 751-07
ISSUE AK
SCALE 1:1
NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
. CONTROLLING DIMENSION: MILLIMETER.
2. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
3. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
4. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.
5. 751-01 THRU 751-06 ARE OBSOLETE. NEW STANDARD IS 751-07.

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
	4.80	5.00	0.189	0.197
B	3.80	4.00	0.150	0.157
C	1.35	1.75	0.053	0.069
D	0.33	0.51	0.013	0.020
G	1.27 BSC		0.050 BSC	
H	0.10	0.25	0.004	0.010
J	0.19	0.25	0.007	0.010
K	0.40	1.27	0.016	0.050
M	0	\circ	8°	0
	\circ	8		
N	0.25	0.50	0.010	0.020
S	5.80	6.20	0.228	0.244

GENERIC
MARKING DIAGRAM*

XXXXX = Specific Device Code
A = Assembly Location
L Wafer Lot
= Year
= Work Week
= Pb-Free Package
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-\mathrm{Free}$ indicator, " G " or microdot " $\mathrm{=}$ ", may or may not be present. Some products may not follow the Generic Marking.
*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLES ON PAGE 2

| DOCUMENT NUMBER: | 98ASB42564B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SOIC-8 NB | PAGE 1 OF 2 |

[^0] special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

SOIC-8 NB
CASE 751-07
ISSUE AK
DATE 16 FEB 2011

STYLE

PIN 1.	EMITTER
2.	COLLECTOR
3.	COLLECTOR
4.	EMITTER
5.	EMITTER
6.	BASE
7.	BASE
8.	EMITTER
STYLE 5:	
PIN 1.	DRAIN
2.	DRAIN
3.	DRAIN
4.	DRAIN
5.	GATE
6.	GATE
7.	SOURCE
8.	SOURCE

STYLE 9:
PIN 1. EMITTER, COMMON
COLLECTOR, DIE \#1 COLLECTOR, DIE \#2 EMITTER, COMMON EMITTER, COMMON BASE, DIE \#2
BASE, DIE \#1
8. EMITTER, COMMON

STYLE 13:
PIN 1. N.C.
2. SOURCE
3. SOURCE

GATE
DRAIN
DRAIN
DRAIN
8. DRAIN

STYLE 17:
PIN 1. VCC
2. V2OUT

V1OUT
TXE
RXE
VEE
7. GND
8. ACC

STYLE 21:
PIN 1. CATHODE 1
2. CATHODE 2
3. CATHODE 3

CATHODE 4
CATHODE 5
6. COMMON ANODE
7. COMMON ANODE
8. CATHODE 6

STYLE 25:
PIN 1. VIN
2. N / C

REXT
GND
IOUT
IOUT
IOUT
8. IOUT

STYLE 29:

PIN 1. BASE, DIE \#
EMITTER, \#1
BASE, \#2
. EMITTER, \#2
5. COLLECTOR, \#2
6. COLLECTOR, \#2
7. COLLECTOR, \#1
7. COLLECTOR, \#1

STYLE
PIN 1. COLIECTOR, DIE,
2. COLLECTOR, \#1
3. COLLECTOR, \#2

COLLECTOR, \#2
BASE, \#2
. EMITTER, \#2
7. BASE, \#1
8. EMITTER, \#1

STYLE 6:
PIN 1. SOURCE
DRAIN
3. DRAIN
4. SOURCE

SOURCE
6. GATE
7. GATE
8. SOURCE

STYLE 10:
PIN 1. GROUND
2. BIAS 1
3. OUTPUT
4. GROUND

GROUND
BIAS 2
7. INPUT
8. GROUND

STYLE 14:
PIN 1. N-SOURCE
2. N-GATE

P-SOURCE
P-GATE
5.DRAIN
6. P-DRAIN
7. N-DRAIN
8. N -DRAIN

STYLE 18
PIN 1. ANODE
2. ANODE
3. SOURCE
4. GATE
5. DRAIN
6. DRAIN
7. CATHODE
8. CATHODE

STYLE 22 :
PIN 1. I/O LINE
2. COMMON CATHODE/VCC
3. COMMON CATHODE/VCC
4. I/O LINE 3
5. COMMON ANODE/GND
6. I/O LINE 4
7. I/O LINE 5
8. COMMON ANODE/GND

STYLE 26:
PIN 1. GND
2. $\mathrm{dv} / \mathrm{dt}$
3. ENABLE
4. ILIMIT
5. SOURCE

SOURCE
7. SOURCE
8. VCC

STYLE 30:
PIN 1. DRAIN 1
2. DRAIN 1
. GATE 2
4. SOURCE 2
5. SOURCE 1/DRAIN 2
. SOURCE 1/DRAIN 2
SOURCE 1/DRAIN 2
8. GATE 1

STYLE 3
STYLE

1. DRAIN, DIE
2. DRAIN, \#1
3. DRAIN, \#
4. DRAIN, \#2
5. DRAIN, \#2
6. GATE, \#2
7. GATE, \#1
8. SOURCE, \#1

STYLE 7

PIN 1. INPUT
2. EXTERNAL BYPASS
3. THIRD STAGE SOURCE
4. GROUND
5. DRAIN
6. GATE 3
7. SECOND STAGE Vd
8. FIRST STAGE Vd

STYLE 11:

PIN 1. SOURCE
2. GATE 1
3. SOURCE 2
4. GATE 2
5. DRAIN 2
6. DRAIN 2
7. DRAIN
8. DRAIN 1

STYLE 15:

PIN 1. ANODE 1
2. ANODE 1
3. ANODE 1
4. ANODE 1
5. CATHODE, COMMON
6. CATHODE, COMMON
7. CATHODE, COMMON
8. CATHODE, COMMON

STYLE 19:

PIN 1. SOURCE
2. GATE 1
3. SOURCE 2
4. GATE 2
5. DRAIN
6. MIRROR 2
7. DRAIN 1
8. MIRROR 1

STYLE 23:

PIN 1. LINE 1 IN
2. COMMON ANODE/GND
3. COMMON ANODE/GND
4. LINE 2 IN
5. LINE 2 OUT
6. COMMON ANODE/GND
7. COMMON ANODE/GND
8. LINE 1 OUT

STYLE 27:
PIN 1. ILIMIT
2. OVLO
3. UVLO
4. INPUT+
5. INPUT+
5. SOURCE
6. SOURCE
7. SOURCE
8. DRAIN

STYLE 4:
PIN 1. ANODE
2. ANODE
3. ANODE
4. ANODE
5. ANODE
6. ANODE
8. COMMON CATHODE

STYLE 8:

PIN 1. COLLECTOR, DIE \#1
2. BASE, \#1
3. BASE, \#2
4. COLLECTOR, \#2
5. COLLECTOR, \#2
6. EMITTER, \#2
7. EMITTER, \#1
8. COLLECTOR, \#1

STYLE 12

PIN 1. SOURCE
2. SOURCE
3. SOURCE
4. GATE
5. DRAIN
6. DRAIN
7. DRAIN
8. DRAIN

STYLE 16:

PIN 1. EMITTER, DIE \#1
2. BASE, DIE \#1
3. EMITTER, DIE \#2
3. EMITTER, DIE
4. BASE, DIE \#2
4. BASE, DIE \#2
6. COLLECTOR, DIE \#2
7. COLLECTOR, DIE \#1
8. COLLECTOR, DIE \#1

STYLE 20:

PIN 1. SOURCE (N)
2. GATE (N)
3. SOURCE (P)
4. GATE (P)
5. DRAIN
6. DRAIN
7. DRAIN
8. DRAIN

STYLE 24
PIN 1. BASE
2. EMITTER
3. COLLECTOR/ANODE
4. COLLECTOR/ANODE
5. CATHODE
6. CATHODE
7. COLLECTOR/ANODE
8. COLLECTOR/ANODE

STYLE 28:

PIN 1. SW_TO_GND
2. DA $\bar{S} I C \bar{O} F F$
3. DASIC_SW_DET
4. GND
5. V_MON
6. VBUULK
7. VBULK
8. VIN

DOCUMENT NUMBER:	98ASB42564B	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.
DESCRIPTION:	SOIC-8 NB	PAGE 2 OF 2

onsemi and OnSemi. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

[^0]: onsemi and OnSemi. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation

