3-TERMINAL 1A NEGATIVE VOLTAGE REGULATORS

The LM79XX series of three-terminal negative regulators are available in TO-220 package and with several fixed output voltages, making them useful in a wide range of applications. Each type employs internal current limiting, thermal shut-down and safe area protection, making it essentially indestructible.

FEATURES

- Output Current in Excess of 1A
- Output Voltages of -5, -6, -8, -12, -15, -18, -24V
- Internal Thermal Overload Protection
- Short Circuit Protection
- Output Transistor Safe-Area Compensation

ORDERING INFORMATION

Device	Output Voltage Tolerance	Package	Operating Temperature
LM79XXCT	±4%	TO-220	0 40500
LM79XXAT	± 2%	10 220	0 ~ +125 °C

BLOCK DIAGRAM

SEMICONDUCTOR TM

© 1999 Fairchild Semiconductor Corporation

LM79XX/A (KA79XX, MC79XX) FIXED VOLTAGE REGULATOR (NEGATIVE)

Characteristic	Symbol	Value	Unit
Input Voltage	VI	-35	V
Thermal Resistance Junction-Cases Junction-Air	R _{θJC} R _{θJA}	5 65	°C / W W, D°
Operating Temperature Range	T _{OPR}	0 ~ +125	°C
Storage Temperature Range	T _{STG}	- 65 ~ +150	°C

ABSOLUTE MAXIMUM RATINGS (T_A=+25°C, unless otherwise specified)

LM7905 ELECTRICAL CHARACTERISTICS

(V_I = 10V, I_O = 500mA, 0°C \leq T_J \leq +125°C, C_I =2.2µF, C_O =1µF, unless otherwise specified.)

Characteristic	Symbol	Test Con	ditions	Min	Тур	Max	Unit
		T _J =+25°C		- 4.8	- 5.0	- 5.2	
Output Voltage	Vo	$I_{O} = 5mA$ to 1A, P_{O} 15W $V_{I} = -7$ to -20V		- 4.75	-5.0	- 5.25	V
		V ₁ = I ₀ =1	-7 to -20V A		5	50	mV
Line Regulation	AVo	$V_1 = \frac{1}{V_1} $	-8 to -12V A		2	25	
		V ₁ = -7.5 to -25V			7	50	
		V _I = -8 to -12V I _O =1A			7	50	
		$I_0 = 5mA \text{ to } 1.5/$	Ą		10	100	
Load Regulation	ΔV_{O}	T _J =+25°C I _O = 250 to 750r	nA		3	50	mV
Quiescent Current	Ι _Q	T ₁ =+25°C			3	6	mA
Quiescent Current Change	Alo	$I_0 = 5mA \text{ to } 1A$			0.05	0.5	m۸
Quescent ourent onange		$V_1 = -8 \text{ to } -25 \text{V}$			0.1	0.8	IIIA
Temperature Coefficient of V _D	$\Delta V_O / \Delta T$	$I_0 = 5mA$			- 0.4		mV/°C
Output Noise Voltage	V _N	f = 10Hz to 1000 $T_A = +25^{\circ}C$	KHz		40		μV
Ripple Rejection	RR	$f = 120Hz, I_0 = -35V$ $\Delta V_1 = 10V$		54	60		dB
Dropout Voltage	V _D	$T_J=+25^{\circ}C$ lo = 1A			2		V
Short Circuit Current	I _{SC}	$T_J = +25^{\circ}C, V_I =$	-35V		300		mA
Peak Current	I _{PK}	T _J =+25°C			2.2		А

* Load and line regulation are specified at constant junction temperature. Changes in Vo due to heating effects must be taken into account separately. Pulse testing with low duty is used.

LM7906 ELECTRICAL CHARACTERISTICS

(V_I = 11V, I_O = 500mA, 0°C \leq T_J \leq +125°C, C_I =2.2µF, C_O = 1µF, unless otherwise specified.)

Characteristic	Symbol	Test Conditions	Min	Тур	Max	Unit
		T _J = +25°C	- 5.75	- 6	- 6.25	
Output Voltage	Vo	$I_{O} = 5mA \text{ to } 1A, P_{O} \text{ 15W}$ $V_{I} = -9 \text{ to } -21V$	- 5.7	- 6	- 6.3	V
Line Regulation	A)/	$V_1 = -8 \text{ to } -25^{\circ}\text{C}$ V ₁ = -8 to -25V		10	120	m\/
Line Regulation	Δv _o	$V_{i} = -9 \text{ to } -12 \text{V}$		5	60	IIIV
Load Regulation		$T_J =+ 25^{\circ}C$ $I_O = 5mA$ to 1.5A		10	120	
	ΔV _O	T _J =+ 25°C I _O = 250 to 750mA		3	60	mv
Quiescent Current	Ι _Q	T _J =+ 25°C		3	6	mA
Quiescent Current Change	Ala	$I_0 = 5mA \text{ to } 1A$			0.5	m۸
Quescent Current Change	ΔlQ	V ₁ = -9 to -25V			1.3	IIIA
Temperature Coefficient of V_D	$\Delta V_O / \Delta T$	$I_0 = 5mA$		-0.5		mV/°C
Output Noise Voltage	V _N	f = 10Hz to 100KHz T _A =+ 25°C		130		μV
Ripple Rejection	RR	f = 120Hz $\Delta V_1 = 10V$	54	60		dB
Dropout Voltage	V _D	$T_J=+ 25^{\circ}C$ $I_O = 1A$		2		V
Short Circuit Current	Isc	T _J = +25°C, V _I = -35V		300		mA
Peak Current	I _{PK}	T _J = +25°C		2.2		А

 * Load and line regulation are specified at constant junction temperature. Changes in V_o due to heating effects must be taken into account separately. Pulse testing with low duty is used.

LM7908 ELECTRICAL CHARACTERISTICS

(V₁ = 14V, I₀ = 500mA, $0^{\circ}C \le T_J \le +125^{\circ}C$, $C_1 = 2.2\mu F$, $C_0 = 1\mu F$, unless otherwise specified.)

Characteristic	Symbol	Test Conditions	Min	Тур	Max	Unit
		T _J =+ 25°C	- 7.7	- 8	- 8.3	
Output Voltage	Vo	$I_0 = 5mA \text{ to } 1A, P_0 \text{ 15W}$ $V_1 = -1.5 \text{ to } -23V$	- 7.6	- 8	- 8.4	V
Line Regulation	A\/-	$V_1 = -10.5 \text{ to } -25 \text{V}$		10	100	
	ΔV_0	$V_{i} = -11 \text{ to } -17 \text{V}$		5	80	mv
		$T_J =+ 25^{\circ}C$ $I_O = 5mA$ to 1.5A		12	160	.,
Load Regulation	ΔV _O	T _J =+ 25°C I _O = 250 to 750mA		4	80	mv
Quiescent Current	la	T _J =+ 25°C		3	6	mA
Quiescent Current Change	Ale	$I_0 = 5mA$ to 1A		0.05	0.5	m۵
Quescent Current Change	ΔIQ	V _I = -11.5 to -25V		0.1	1	ША
Temperature Coefficient of V _D	$\Delta V_0 / \Delta T$	$I_0 = 5mA$		-0.6		mV/°C
Output Noise Voltage	V _N	f = 10Hz to 100KHz T _A =+ 25°C		175		μV
Ripple Rejection	RR	f = 120Hz ΔV _I = 10V	54	60		dB
Dropout Voltage	VD	$T_J=+ 25^{\circ}C$ $I_O = 1A$		2		V
Short Circuit Current	I _{SC}	T _J =+ 25°C, V _I = -35V		300		mA
Peak Current	I _{PK}	T_=+ 25°C		2.2		A

 * Load and line regulation are specified at constant junction temperature. Changes in V₀ due to heating effects must be taken into account separately. Pulse testing with low duty is used.

LM7909 ELECTRICAL CHARACTERISTICS

(V_I = 14V, I_O = 500mA, 0°C \leq T_J \leq + 125°C, C_I =2.2µF, C_O = 1µF, unless otherwise specified)

Characteristic	Symbol	Test Conditions	Min	Тур	Max	Unit
		T _J =+ 25°C	- 8.7	- 9.0	- 9.3	
Output Voltage	Vo	$I_0 = 5mA \text{ to } 1A, P_0 15W$ $V_1 = -1.5 \text{ to } -23V$	- 8.6	- 9.0	- 9.4	V
Line Regulation	A\/	$V_{I} = -10.5 \text{ to } -25 \text{V}$		10	180	
	Δv _o	$V_{i} = -11 \text{ to } -17 \text{V}$		5	90	mv
Load Regulation		$T_J =+ 25^{\circ}C$ $I_O = 5mA$ to 1.5A		12	180	
	ΔVo	T _J =+ 25°C I _O = 250 to 750mA		4	90	mv
Quiescent Current	Ιq	T _J =+ 25°C		3	6	mA
Quiescent Current Change	ΔI_Q	$I_0 = 5mA$ to 1A		0.05	0.5	mΑ
Quescent Current Change		V _I = -11.5 to -25V		0.1	1	IIIA
Temperature Coefficient of V _D	$\Delta V_0 / \Delta T$	$I_0 = 5mA$		-0.6		mV/°C
Output Noise Voltage	V _N	f = 10Hz to 100KHz T _A =+ 25°C		175		μV
Ripple Rejection	RR	f = 120Hz ΔV ₁ = 10V	54	60		dB
Dropout Voltage	V _D	$T_J=+ 25^{\circ}C$ $I_O = 1A$		2		V
Short Circuit Current	I _{SC}	T_{J} = +25°C, V_{I} = -35V		300		mA
Peak Current	I _{PK}	T _J =+25°C		2.2		A

 * Load and line regulation are specified at constant junction temperature. Changes in V₀ due to heating effects must be taken into account separately. Pulse testing with low duty is used.

LM7912 ELECTRICAL CHARACTERISTICS

(V_I= 18V, I_O =500mA, 0°C \leq T_J \leq +125°C, C_I =2.2µF, C_O = 1µF, unless otherwise specified.)

Characteristic	Symbol	Test Conditions	Min	Тур	Max	Unit
		T _J = +25°C	-11.5	-12	-12.5	
Output Voltage	Vo	$I_0 = 5mA \text{ to } 1A, P_0 \text{ 15W}$ $V_1 = -15.5 \text{ to } -27V$	-11.4	-12	-12.6	V
Line Regulation		$T_{1} = 25^{\circ}C$ V ₁ = -14.5 to -30V		12	240	m\/
Line Regulation	Δνο	V_{i} = -16 to -22V		6	120	IIIV
Load Regulation		$T_J =+ 25^{\circ}C$ $I_O = 5mA$ to 1.5A		12	240	
	ΔV _O	T _J =+ 25°C I _O = 250 to 750mA		4	120	mv
Quiescent Current	Ιq	T _J =+ 25°C		3	6	mA
Quieseent Current Change	41	$I_0 = 5mA$ to 1A		0.05	0.5	m۵
Quiescent Current Change	ΔIQ	$V_{I} = -15 \text{ to } -30 \text{V}$		0.1	1	1114
Temperature Coefficient of V _D	$\Delta V_0 / \Delta T$	I _O = 5mA		-0.8		mV/°C
Output Noise Voltage	V _N	f = 10Hz to 100KHz T _A =+ 25°C		200		μV
Ripple Rejection	RR	f = 120Hz $\Delta V_I = 10V$	54	60		dB
Dropout Voltage	VD	T_{J} = +25°C I_{O} = 1A		2		V
Short Circuit Current	I _{SC}	$T_J = + 25^{\circ}C, V_I = -35V$		300		mA
Peak Current	I _{PK}	T_=+ 25°C		2.2		A

 * Load and line regulation are specified at constant junction temperature. Changes in V₀ due to heating effects must be taken into account separately. Pulse testing with low duty is used.

LM7915 ELECTRICAL CHARACTERISTICS

(V₁ = 23V, I₀ = 500mA, 0°C \leq T_J +125°C, C₁=2.2µF, C₀ = 1µF, unless otherwise specified.)

Characteristic	Symbol	Tes	st Conditions	Min	Тур	Max	Unit
		T _J =+ 25°C		-14.4	-15	-15.6	
Output Voltage	Vo	$I_0 = 5mA$ to $V_1 = -18$ to -	1A, P _o 15W 30V	-14.25	-15	-15.75	V
Line Regulation	۸Ve	T₁ = 25°C	V _I = -17.5 to -30V		12	300	m\/
	200	13 - 20 0	V _I = -20 to -26V		6	150	IIIV
Lood Downlation		$T_J =+ 25^{\circ}C$ $I_O = 5mA$ to	1.5A		12	300	
	ΔV_{O}	$T_{J} = +25^{\circ}C$ $I_{O} = 250 \text{ to } T_{O}$	750mA		4	150	mv
Quiescent Current	lq	T, =+ 25°C			3	6	mA
Quiescent Current Change	41	$I_0 = 5mA \text{ to } 1A$			0.05	0.5	mΔ
Quescent Current Change	ΔIQ	V ₁ = -18.5 to -30V			0.1	1	iii/ (
Temperature Coefficient of V _D	$\Delta V_O / \Delta T$	$I_0 = 5mA$			-0.9		mV/°C
Output Noise Voltage	V _N	f = 10Hz to $T_A =+ 25^{\circ}C$	100Khz		250		μV
Ripple Rejection	RR	f = 120Hz $\Delta V_I = 10V$		54	60		dB
Dropout Voltage	VD	T _J =+25°C I _O = 1A			2		V
Short Circuit Current	Isc	T _J =+ 25°C,	$V_1 = -35V$		300		mA
Peak Current	I _{PK}	T_=+ 25°C			2.2		A

* Load and line regulation are specified at constant junction temperature. Changes in Vo due to heating effects must be taken into account separately. Pulse testing with low duty is used.

LM7918 ELECTRICAL CHARACTERISTICS

(V_I = 27V, I_O = 500mA, 0°C \leq T_J \leq +125°C, C_I =2.2µF, C_O = 1µF, unless otherwise specified.)

Characteristic	Symbol	Tes	at Conditions	Min	Тур	Max	Unit
		T _J =+ 25°C		-17.3	-18	-18.7	
Output Voltage	Vo	$I_0 = 5mA$ to V ₁ = -22.5 to	1A, P _O 15W 9-33V	-17.1	-18	-18.9	V
Line Regulation	۸Ve	T₁ = 25°C	V _I = -21 to -33V		15	360	m\/
Line Regulation	740	13 = 23 0	V _I = -24 to -30V		8	180	IIIV
		$T_J =+ 25^{\circ}C$ $I_0 = 5mA$ to	1.5A		15	360	
Load Regulation	ΔV_{O}	$T_{J} = +25^{\circ}C$ $I_{O} = 250 \text{ to } 7$	750mA		5	180	mV
Quiescent Current	la	T _{.1} =+ 25°C			3	6	mA
		$I_0 = 5mA$ to 1A				0.5	m۸
Quiescent Current Change	ΔI_Q	$V_1 = -22$ to -	33V			1	ША
Temperature Coefficient of V _D	$\Delta V_0 / \Delta T$	$I_0 = 5mA$			-1		mV/°C
Output Noise Voltage	V _N	f = 10Hz to $T_A =+ 25^{\circ}C$	100KHz		300		μV
Ripple Rejection	RR	f = 120Hz $\Delta V_i = 10V$		54	60		dB
Dropout Voltage	VD	T _J =+ 25°C Io = 1A			2		V
Short Circuit Current	I _{SC}	T _J =+ 25°C,	V _I = -35V		300		mA
Peak Current	I _{PK}	TJ=+ 25°C			2.2		А

* Load and line regulation are specified at constant junction temperature. Changes in Vo due to heating effects must be taken into account separately. Pulse testing with low duty is used.

LM7924 ELECTRICAL CHARACTERISTICS

(V_I = 33V, I_O = 500mA, 0°C \leq T_J \leq +125°C, C_I =2.2µF, C_O = 1µF, unless otherwise specified.)

Characteristic	Symbol	Tes	st Conditions	Min	Тур	Max	Unit
		T _J =+25°C		- 23	- 24	- 25	
Output Voltage	Vo	$I_0 = 5mA$ to V ₁ = -27 to -	1A, P _O ≤15W 38V	- 22.8	- 24	- 25.2	V
Line Regulation		T 25°C	$V_1 = -27 \text{ to } -38 \text{V}$		15	480	m\/
	200	1j = 20 0	V _I = - 30 to - 36V		8	180	IIIV
Load Regulation		$T_J = +25^{\circ}C$ $I_O = 5mA$ to	T _J = +25°C I₀ = 5mA to 1.5A		15	480	
	ΔV _O	$T_{J} = +25^{\circ}C$ $I_{O} = 250 \text{ to}$	750mA		5	240	mV
Quiescent Current	Ιq	T, =+ 25°C			3	6	mA
Quiescent Current Change	٨١٠	$I_0 = 5$ mA to 1A $V_1 = -27$ to $-38V$				0.5	m۸
Quescent Current Change	ΔiQ				1		IIIA
Temperature Coefficient of V _D	$\Delta V_0 / \Delta T$	$I_0 = 5mA$			-1		mV/°C
Output Noise Voltage	V _N	f = 10Hz to T _A =+ 25°C	100KHz		400		μV
Ripple Rejection	RR	f = 120Hz $\Delta V_I = 10V$		54	60		dB
Dropout Voltage	V _D	T_{J} = +25°C I_{O} = 1A			2		V
Short Circuit Current	I _{SC}	T _J =+ 25°C,	V ₁ = -35V		300		mA
Peak Current	I _{PK}	TJ=+25°C			2.2		A

 * Load and line regulation are specified at constant junction temperature. Changes in V_0 due to heating effects must be taken into account separately. Pulse testing with low duty is used.

LM7905A ELECTRICAL CHARACTERISTICS

(V_I = 10V, I_O = 500mA, $0^{\circ}C \le T_J \le +125^{\circ}C$, $C_I = 2.2\mu F$, $C_O = 1\mu F$, unless otherwise specified.)

Characteristic	Symbol	Test Conditions	Min	Тур	Max	Unit
		T _J =+ 25°C	- 4.9	- 5.0	- 5.1	
Output Voltage	Vo	$I_{O} = 5mA \text{ to } 1A, P_{O} \text{ 15W}$ $V_{I} = -7 \text{ to } -20V$	- 4.8	-5.0	- 5.2	V
		$V_1 = -7 \text{ to } -20V$ $V_0 = 1A$		5	50	mV
Line Regulation	ΔVo	$V_{\rm J} = +25^{\circ}C$ $V_{\rm I} = -8 \text{ to } -12V$ $I_{\rm O} = 1A$		2	25	
	Ŭ	V ₁ = -7.5 to -25V		7	50	
		V _I = -8 to -12V I _O =1A		7	50	
		$I_0 = 5mA$ to 1.5A		10	100	
Load Regulation	ΔV_{O}	T _J =+ 25°C I _O = 250 to 750mA		3	50	mV
Quiescent Current	Ι _Q	T _J = +25°C		3	6	mA
Quiescent Current Change	Alo	$I_0 = 5mA$ to 1A		0.05	0.5	mΑ
	3	V _I = -8 to -25V		0.1	0.8	ША
Temperature Coefficient of V_D	$\Delta V_0 / \Delta T$	I _O = 5mA		- 0.4		mV/°C
Output Noise Voltage	V _N	f = 10Hz to 100KHz T _A =+ 25°C		40		μV
Ripple Rejection	RR	$f = 120Hz, I_0 = -35V$ $\Delta V_1 = 10V$	54	60		dB
Dropout Voltage	V _D	T _J =+ 25°C I _O = 1A		2		V
Short Circuit Current	I _{SC}	T _J =+ 25°C, V _I = -35V		300		mA
Peak Current	I _{PK}	T _J =+ 25°C		2.2		A

 * Load and line regulation are specified at constant junction temperature. Changes in V₀ due to heating effects must be taken into account separately. Pulse testing with low duty is used.

FAIRCHILD

Characteristic	Symbol	Test Conditions	Min	Тур	Max	Unit
		T _J =+ 25°C	-11.75	-12	-12.25	
Output Voltage	Vo	$I_0 = 5mA \text{ to } 1A, P_0 \text{ 15W}$ $V_1 = -15.5 \text{ to } -27V$	-11.5	-12	-12.5	V
Line Regulation	۸\/	$V_{i} = -14.5 \text{ to } -30 \text{V}$		12	240	m\/
Line Regulation	Δv_0	V _I = -16 to -22V		6	120	IIIV
Load Regulation		$T_J = +25^{\circ}C$ $I_O = 5mA$ to 1.5A		12	240	
	ΔV_0	T _J =+ 25°C I ₀ = 250 to 750mA		4	120	mv
Quiescent Current	Ιq	T _J =+ 25°C		3	6	mA
Outland of the second of the second	ΔI_Q	$I_0 = 5mA$ to 1A		0.05	0.5	mΑ
Quescent Current Change		V _I = -15 to -30V		0.1	1	ША
Temperature Coefficient of V _D	$\Delta V_0 / \Delta T$	$I_0 = 5mA$		-0.8		mV/°C
Output Noise Voltage	V _N	f = 10Hz to 100Khz T _A =+ 25°C		200		μV
Ripple Rejection	RR	f = 120Hz $\Delta V_1 = 10V$	54	60		dB
Dropout Voltage	VD	$T_J=+ 25^{\circ}C$ $I_O = 1A$		2		V
Short Circuit Current	I _{SC}	$T_J = +25^{\circ}C, V_I = -35V$		300		mA
Peak Current	I _{PK}	T _J =+ 25°C		2.2		A

(1/-19)/1 - 500mA	0°C <t 125°c<="" <="" th=""><th>C _2 20E C _</th><th>1. E unlogo</th><th>othonwing on</th><th>onifind)</th></t>	C _2 20E C _	1. E unlogo	othonwing on	onifind)
$v_1 = 10v, v_0 = 500000A,$	$0 0 \ge 1 = +120 0$,	$O_1 = 2.2 \mu \Gamma, O_0 =$	iμi, uniess	onieiwise sp	ecineu.)

 * Load and line regulation are specified at constant junction temperature. Changes in V₀ due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Characteristic	Symbol	Test Conditions	Min	Тур	Max	Unit
		T _J = +25°C	-14.7	-15	-15.3	
Output Voltage	Vo	$I_0 = 5mA \text{ to } 1A, P_0 15W$ V ₁ = -18 to -30V	-14.4	-15	-15.6	V
Line Regulation	۸۷/-	$T_1 = \pm 25^{\circ}C$ $V_1 = -17.5 \text{ to } -30V$		12	300	m\/
	740	V _I = -20 to -26V		6	150	IIIV
Lood Pogulation		$T_J =+ 25^{\circ}C$ $I_O = 5mA$ to 1.5A		12	300	
	ΔVo	T _J =+ 25°C I _O = 250 to 750mA		4	150	mv
Quiescent Current	lq	T _J =+ 25°C		3	6	mA
Quiescent Current Change	ΔI_Q	$I_0 = 5mA$ to 1A		0.05	0.5	mΑ
Quescent Current Change		V ₁ = -18.5 to -30V		0.1	1	
Temperature Coefficient of V _D	$\Delta V_0 / \Delta T$	$I_0 = 5mA$		-0.9		mV/°C
Output Noise Voltage	V _N	f = 10Hz to 100KHz T _A =+25°C		250		μV
Ripple Rejection	RR	f = 120Hz $\Delta V_1 = 10V$	54	60		dB
Dropout Voltage	V _D	T_{J} = +25°C I_{O} = 1A		2		V
Short Circuit Current	I _{SC}	T _J =+ 25°C, V _I = -35V		300		mA
Peak Current	I _{PK}	T _J =+ 25°C		2.2		A

- ($V_{1} = 23V_{1} = 500 \text{m}$	0°C <t <="" p="" ±125°c<=""></t>	$C_{1} = 22 \mu E_{1} C_{2} = 1$	ILF UNLESS OTHERWISE	specified)
_ \	$v_1 = 20v, v_0 = 000000$	(, 0 0 - 1) - 120 0,	$0 - 2.2 \mu $, $0 - 1$	μi, unicoo ouriciwioc	specificu.

 * Load and line regulation are specified at constant junction temperature. Changes in V₀ due to heating effects must be taken into account separately. Pulse testing with low duty is used.

LM79XX/A (KA79XX, MC79XX) FIXED VOLTAGE REGULATOR (NEGATIVE)

Fig.5 Short Circuit Current

Fig. 6 Negative Fixed output regulator

Notes:

- To specify an output voltage, substitute voltage value for "XX "
- (2) Required for stability. For value given, capacitor must be solid tantalum. If aluminum electronics are used, at least ten times value shown should be selected. C₁ is required if regulator is located an appreciable
- distance from power supply filter.
 (3) To improve transient response. If large capacitors are used, a high current diode from input to output (1N400l or similar) should be introduced to protect the device from momentary input short circuit.

Fig. 7 Split power supply (±12V/1A)

*: Against potential latch-up problems.

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACExTM CoolFETTM CROSSVOLTTM E²CMOSTM FACTTM FACT Quiet SeriesTM FAST[®] FAST[®] FASTrTM GTOTM HiSeCTM ISOPLANAR[™] MICROWIRE[™] POP[™] PowerTrench[™] QS[™] Quiet Series[™] SuperSOT[™]-3 SuperSOT[™]-6 SuperSOT[™]-8 TinyLogic[™]

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.