Jump to content
Electronics-Lab.com Community

Search the Community

Showing results for tags 'imx6ull'.

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


  • Electronics Forums
    • Projects Q/A
    • Datasheet/Parts requests
    • Electronic Projects Design/Ideas
    • Power Electronics
    • Service Manuals
    • Theory articles
    • Electronics chit chat
    • Microelectronics
    • Electronic Resources
  • Related to Electronics
    • Spice Simulation - PCB design
    • Inventive/New Ideas
    • Mechanical constructions/Hardware
    • Sell/Buy electronics - Job offer/requests
    • Components trade
    • High Voltage Stuff
    • Electronic Gadgets
  • General
    • Announcements
    • Feedback/Comments
    • General
  • Salvage Area

Find results in...

Find results that contain...

Date Created

  • Start


Last Updated

  • Start


Filter by number of...


  • Start



Website URL





Found 2 results

  1. The pollutants produced by human activities are the main factors causing water pollution. To protect the water environment, we must strengthen the monitoring of sewage discharge, the analysis of surface water, groundwater, industrial wastewater, and other water quality, and ensure the safety of people's water use. Drinking water safety concerns everybody, but many people still do not know its quality. Does the residual chlorine exceed the standard? What is the pH? These important indicators related to drinking water health need to be accurately detected. A water quality detector is a professional instrument used to analyze the content of water quality components, which can measure BOD, COD, ammonia nitrogen, total phosphorus, total nitrogen, turbidity, pH, and dissolved oxygen in water. It plays an important role and has been widely used in water quality detection and water resources protection. FETMX6ULL-C arm core board launched by Forlinx Embedded can be effectively used in water quality detectors to help us better protect drinking water. FETMX6ULL-C core board is a processor-based NXP i.MX6ULL is designed with a low-power ARM Cortex-A7 architecture that runs at speeds up to 800MHz. A low main frequency can reduce the heat generated by the CPU and extend the service life of the CPU. Its stable performance has been verified in long-term use in many fields. FETMX6ULL-C SoM is highly integrated and supports 8x serial ports, 2x network ports, and 2x CAN. The rich interfaces can connect dissolved oxygen sensors (with temperature), pH sensors, conductivity sensors, turbidity sensors, ammonia nitrogen analyzers, total organic carbon analyzers TOC, etc., to facilitate on-site construction and assembly. Dual-lane Ethernet can achieve dual-network redundancy. The 10M/100M adaptive Ethernet interface provides double insurance for the network. The support of WiFi and 4G also makes operation and maintenance more convenient. The software system uses Linux 4.1.15 and has an experienced technical support team to solve problems in the user design, allowing customers to quickly enter the product testing phase. Originally published at www.forlinx.net.
  2. Introducing the FETMX6ULL-S System on Module (SoM) based on the powerful i.MX6ULL processor! This highly adaptable SoM features a dual native Ethernet ports, dual CAN controller, and octa UART, making it the perfect choice for a wide range of applications in various embedded systems and domains. With its compact size of 44*35mm, the FETMX6ULL-S SoM offers a perfect balance between performance and space efficiency. Whether you're working on media playing, digital camera integration, or WXGA display projects, this SoM has got you covered! Not only does it support 24-bit parallel LCD output up to WXGA (1366x768) for crystal-clear visuals, but it also boasts features like a 8/10/16/24-bit parallel camera sensor OV9650, three IIS interfaces, and ALSA audio form for an immersive multimedia experience. The FETMX6ULL-S SoM comes in both industrial-grade and expansion commerce-grade options, catering to various project requirements. Choose from 256MB DDR3L/512MB DDR3L RAM and 256MB NandFlash/4GB eMMC storage options to suit your needs. Rest assured, this SoM is well-supported with Linux 4.1.15 and QTGUI, ensuring a seamless development experience. With support for OTG, SD/TF card flashing mode, and separate kernel updates, you have the flexibility to customize and optimize your projects effortlessly.
  • Create New...