Jump to content
Electronics-Lab.com Community

Search the Community

Showing results for tags 'thingspeak'.

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


  • Electronics Forums
    • Projects Q/A
    • Datasheet/Parts requests
    • Electronic Projects Design/Ideas
    • Power Electronics
    • Service Manuals
    • Theory articles
    • Electronics chit chat
    • Microelectronics
    • Electronic Resources
  • Related to Electronics
    • Spice Simulation - PCB design
    • Inventive/New Ideas
    • Mechanical constructions/Hardware
    • Sell/Buy electronics - Job offer/requests
    • Components trade
    • High Voltage Stuff
    • Electronic Gadgets
  • General
    • Announcements
    • Feedback/Comments
    • General
  • Salvage Area

Find results in...

Find results that contain...

Date Created

  • Start


Last Updated

  • Start


Filter by number of...


  • Start



Website URL





Found 3 results

  1. This guide explains the steps to seamlessly integrate the WM1110 sensor module with The Things Network (TTN) and ThingSpeak for data transmission and visualization. The seeed studio Wio-WM1110 Dev Kit is based on the Wio-WM1110 Wireless Module, which integrates both a Semtech LoRa® transceiver and a multi-purpose radio front-end for geolocation functionalities. The LoRa® transceiver enables low-power, high-sensitivity network coverage, while GNSS (GPS/BeiDou) and Wi-Fi scanning work together to offer comprehensive location coverage. Additionally, the Dev Kit provides connectivity options for a variety of peripherals, making it a versatile platform for developing diverse IoT applications. The Wio-WM1110 is a powerful fusion positioning module designed for developing low-power, long-range IoT applications. It combines the capabilities of the Semtech LR1110 LoRa transceiver and the Nordic nRF52840 microcontroller, offering a comprehensive solution for building connected devices with the following features: Long-range wireless communication: Utilizing Semtech's LoRa technology, the Wio-WM1110 enables low-power communication over vast distances, making it ideal for connecting devices in remote locations. Global Navigation Satellite System (GNSS): Integrated GNSS support, including GPS and BeiDou, provides accurate location tracking capabilities for your IoT devices. Wi-Fi connectivity: In addition to LoRaWAN and GNSS, the Wio-WM1110 also offers Wi-Fi connectivity, providing another option for device communication and internet access. Bluetooth: The module further extends its connectivity options by supporting Bluetooth protocols, enabling communication with other Bluetooth-enabled devices. Fusion positioning: By combining the data from LoRaWAN, GNSS, Wi-Fi, and Bluetooth, the Wio-WM1110 can achieve highly accurate and reliable positioning, even in challenging environments. Low-power operation: The Wio-WM1110 is designed for low-power consumption, allowing your devices to operate for extended periods on battery power. Open-source platform: The Wio-WM1110 is based on an open-source platform, providing developers with access to the underlying hardware and software, allowing for greater customization and flexibility. Get PCBs for Your Projects Manufactured This project was successfully completed because of the help and support from NextPCB. Guys if you have a PCB project, please visit their website and get exciting discounts and coupons. NextPCB offers high-quality, reliable PCB starting at $1.9, and multilayer starting at $6.9. Also, everyone can enjoy free PCB assembly for 5 boards! Also, NextPCB is having a year end sale in which anyone can register through their website and get a $30 Coupon which can be used for ordering PCBs. You can also try HQDFM free online PCB Gerber viewer to check your PCB design and avoid costly errors. Let's learn what WM1110 is. The Seeed Studio Wio-WM1110 is not just a blend of the Semtech LR1110 and Nordic nRF52840, it's a powerful fusion of these two technologies, creating a development platform with exceptional capabilities for building low-power, long-range IoT applications. LR1110 Features LR1110 Block diagram Low-Power, High-Sensitivity LoRa®/(G)FSK Half-Duplex RF Transceiver Supports worldwide ISM frequency bands in the range of 150 MHz to 960 MHz. Features a low-noise figure RX front-end for enhanced LoRa®/(G)FSK sensitivity. Offers two high-power PA paths: +22 dBm and +15 dBm, with a high-efficiency PA path at +15 dBm. Provides a long-range FHSS (LR-FHSS) modulator. Includes an integrated PA regulator supply selector for simplified dual power (+15 dBm/+22 dBm) implementation with one board design. Supports worldwide multi-region BoMs, with the circuit adapting to matching networks to satisfy regulatory limits. Fully compatible with SX1261/2/8 devices and the LoRaWAN® standard, defined by the LoRa Alliance®. Multi-Purpose Radio Front-End for Geolocation Applications GNSS (GPS/BeiDou) low-power scanning 802.11b/g/n Wi-Fi ultra-low-power passive scanning 150 - 2700 MHz continuous frequency coverage High-bandwidth RX ADC (up to 24 MHz DSB) Digital baseband processing Cryptographic Engine: Securing Your LoRaWAN Applications The Wio-WM1110 integrates a powerful cryptographic engine to safeguard your LoRaWAN applications. Here's a breakdown of its key features: Hardware-Accelerated Encryption/Decryption: Provides efficient AES-128 encryption and decryption, crucial for securing data communication in LoRaWAN networks. Dedicated hardware offloads the processing burden from the main CPU, enhancing performance and reducing power consumption. Device Parameter Management: Securely stores and manages device parameters like DevEUI and JoinEUI, defined by the LoRa Alliance. These unique identifiers are essential for device authentication and network access, and the cryptographic engine ensures their integrity and confidentiality. Enhanced Security: Protects sensitive information like encryption keys from unauthorized access, preventing potential breaches and data leaks. Offers a secure environment for storing critical data like NwkKey and AppKey, as defined in the LoRaWAN standard. Overall, the cryptographic engine plays a crucial role in safeguarding the security and reliability of your LoRaWAN applications. It provides comprehensive protection for sensitive data and facilitates secure communication within the network. NRF52840 Features The NRF52840 is a powerful and versatile Bluetooth Low Energy (BLE) SoC from Nordic Semiconductor, offering a wide range of features for various IoT applications. Here's a breakdown of its key highlights: NRF52840 Block Diagram CPU and Memory: 64 MHz Arm Cortex-M4F CPU with FPU: Delivers ample processing power for running complex applications. 1 MB Flash memory: Stores application code and data. 256 KB RAM: Provides sufficient memory for application execution and data handling. Wireless Connectivity: Bluetooth 5.3: Supports the latest Bluetooth standard for long-range, high throughput, and improved security. 2 Mbps PHY: Enables faster data transfer compared to previous Bluetooth versions. Long Range: Achieves extended communication range for IoT applications. 802.15.4: Supports additional protocols like Thread and Zigbee for wider ecosystem compatibility. Peripherals and Interfaces: Multiple GPIOs: Enables connection to various sensors, actuators, and peripherals. High-speed SPI and QSPI: Offers fast data transfer for external memory and displays. PDM and I2S: Supports digital microphones and audio applications. Full-speed USB device: Enables data transfer and battery charging. ADC and DAC: Allows analog signal acquisition and generation. Power Management: Ultra-low power consumption: Enables long battery life for IoT devices. Multiple power saving modes: Dynamically adjusts power consumption based on application requirements. Security: Hardware Cryptographic Engine: Provides secure data encryption and decryption. Secure Boot: Ensures only authorized code can be executed on the device. Other Features: Real-time clock (RTC): Enables accurate timekeeping. Temperature sensor: Provides temperature readings for environmental monitoring. On-chip debugger: Simplifies development and debugging process. Open-source platform: Access to extensive resources and libraries for easier development and customization. Overall, the NRF52840 is a powerful and feature-rich SoC that empowers developers to build innovative and efficient IoT solutions with low power consumption and robust capabilities. Wio-WM1110 Dev Kit Block Diagram & Hardware Overview Wio-WM1110 Dev Kit Block Diagram Hardware Overview Pinout Pin Diagram Specifications 1 / 3 Firmware Development for Wio-WM1110 Before we begin developing, we will need the following tools to complete this Getting Started Guide. Preparation Wio-WM1110 Dev Kit x 1 Computer x 1 USB Type-C Cable x 1 USB Type-B Cable x 1 J-Link Debug Programmer(or nRF52dk) x 1 Power on the Wio-WM1110 Dev Board and connect the J-Link Debug Programmer to the board as follows: Connect the nRF52 DK's J-Link SWD pins (SWDIO and SWCLK) to the Wio-WM1110 Dev Board's SWD pins (SWDIO and SWCLK) to flash the firmware CONNECTION: 3V3 (Wio-WM1110 Dev Board) -> VTG (J-Link Debug Programmer nrf52dk)CLK (Wio-WM1110 Dev Board) -> SWCLK (J-Link Debug Programmer nrf52dk)DIO (Wio-WM1110 Dev Board) -> SWDIO (J-Link Debug Programmer nrf52dk)GND (Wio-WM1110 Dev Board) -> GND (J-Link Debug Programmer nrf52dk) Programming Software: A variety of programming software options exist for developing firmware on the WM1110. I have tested the module using Arduino IDE, PlatformIO, Keil uVision, Visual Studio Code, SEGGER Embedded Studio (SES), and Mbed Studio. From my experience, Mbed Studio and SEGGER Embedded Studio (SES) offer the most user-friendly experience for firmware development. This Getting Started guide will utilize SEGGER Embedded Studio (SES) for developing the firmware. SEGGER Embedded Studio (SES) is a comprehensive and user-friendly IDE for managing, building, testing, and deploying embedded applications. This translates to smooth and efficient development operations thanks to its extensive feature set. Powerful Project Management: Effortlessly manage your Wio-WM1110 firmware projects, regardless of size or complexity, with SES's robust project management tools. Seamless Version Control: Leverage built-in version control features to track changes and deploy applications automatically. Integrated Build and Debugging Tools: Utilize SES's powerful integrated build and debugging tools to streamline your Wio-WM1110 firmware development workflow. Installing SEGGER Embedded Studio : The software can be downloaded from this link: It's recommended to use the 5.68 version.https://www.segger.com/downloads/embedded-studio/ Download the nRF5 SDK and place it in the same directory where SEGGER Embedded Studio is installed. The nRF5 SDK provides a comprehensive development environment for nRF5 Series devices. It includes a broad selection of drivers, libraries, examples for peripherals, SoftDevices, and proprietary radio protocols. All code examples within the SDK are specifically designed to compile and run on the Wio-WM1110 Dev Kit, streamlining your development process. The software can be downloaded from this link: nRF5 SDK-Download Download the Seeed Example Package and place it in the same directory where the nRF5 SDK is installed. The Seeed Example Package can be downloaded from this link:Seeed Example-Download Seeed Studio provides an example project to jumpstart developers' progress. This project encompasses LoRaWAN communication, positioning information acquisition, onboard sensor data acquisition, and more. Add Seeed Example file to nRF5 SDK Copy the Seeed Example file to the following path of nRF5 SDK: .../nRF5_SDK_17.1.0_ddde560/examples/peripheral/ Testing the Wio-WM1110's Onboard LED with a Blinky Example The Blinky Example code is readily available within the "Example" folder. Access the code by navigating to the "Open solution" tab. Compiling the test application Select "Build" > "Compile project_target". Programming the test application After compiling the application, you can program it to the Dev board. Click "Target" -- "Connect J-Link" Click "Build" -- "Build and Run" to build the blinky project. You will see "Download successful" when it has been completed. Then the 2 LEDs on the board will blink as follows. Example code for Seamless Integration of WM1110 using TTN and ThingSpeak. In this project, the onboard temperature and humidity sensors of the WM1110 development kit are used to collect data. This sensor data is sent to ThingSpeak for data transmission and visualization, utilizing TTN webhooks integration. Before diving straight into LoRaWAN integration, we need to learn the LR1110's instructions to integrate it with the code. Otherwise, it won't be easy to understand the code. First, learn about LoRaWAN from the Semtech Learning Center. Here is the link to the courses: https://learn.semtech.com/ Next, go through the LoRa Basics™ Modem User Manual for comprehensive instructions on handling the LoRaWAN protocol. Setup the LoRaWAN Configuration keys Wio-WM1110 DK allows users to set the DevEUI, AppEUI, and AppKey, so you can set up our parameters in the 'lorawan_key_config.h' file Based on the operating region, you must specify the LORAWAN_REGION. The AppEUI key is user-defined and requires manual entry during registration. In the current example project, I have manually entered the AppEUI key. Device Registering on LoRaWAN® Network Server(TTN) To begin, register for an account with The Things Industries or The Things Network. Step 1: Create an application Navigate to the Applications page, and click "+Create application". Enter an application ID in lowercase letters and numbers only. You may also use the hyphen (-) symbol. Click Create Application to save your changes. Step 2: Register the Device Click "Register end device". Set the following parameters: Frequency Plan: Select the appropriate Frequency plan for the target region LoRaWAN version:LoRaWAN Specification 1.0.3 The remaining keys, DevEUI and AppKey, can be generated using automated tools. Here are the actual settings that I specifically configured for the current example project. For a better understanding of how to integrate the whole process, please follow the video provided below. Code #include "main_lorawan.h" #include "lorawan_key_config.h" #include "smtc_board.h" #include "smtc_hal.h" #include "apps_modem_common.h" #include "apps_modem_event.h" #include "smtc_modem_api.h" #include "device_management_defs.h" #include "smtc_board_ralf.h" #include "apps_utilities.h" #include "smtc_modem_utilities.h" float temp = 0, humi = 0; #define xstr( a ) str( a ) #define str( a ) #a static uint8_t stack_id = 0; static uint8_t app_data_buffer[LORAWAN_APP_DATA_MAX_SIZE]; static void send_frame( const uint8_t* buffer, const uint8_t length, const bool confirmed ); static void parse_downlink_frame( uint8_t port, const uint8_t* payload, uint8_t size ); static void on_modem_reset( uint16_t reset_count ); static void on_modem_network_joined( void ); static void on_modem_alarm( void ); static void on_modem_tx_done( smtc_modem_event_txdone_status_t status ); static void on_modem_down_data( int8_t rssi, int8_t snr, smtc_modem_event_downdata_window_t rx_window, uint8_t port, const uint8_t* payload, uint8_t size ); int main( void ) { hal_debug_init( ); hal_i2c_master_init( ); hal_gpio_init_out( SENSOR_POWER, HAL_GPIO_SET ); hal_mcu_wait_ms( 10 ); // wait power on SHT41Init( ); static apps_modem_event_callback_t smtc_event_callback = { .adr_mobile_to_static = NULL, .alarm = on_modem_alarm, .almanac_update = NULL, .down_data = on_modem_down_data, .join_fail = NULL, .joined = on_modem_network_joined, .link_status = NULL, .mute = NULL, .new_link_adr = NULL, .reset = on_modem_reset, .set_conf = NULL, .stream_done = NULL, .time_updated_alc_sync = NULL, .tx_done = on_modem_tx_done, .upload_done = NULL, }; /* Initialise the ralf_t object corresponding to the board */ ralf_t* modem_radio = smtc_board_initialise_and_get_ralf( ); /* Disable IRQ to avoid unwanted behaviour during init */ hal_mcu_disable_irq( ); /* Init board and peripherals */ hal_mcu_init( ); smtc_board_init_periph( ); /* Init the Lora Basics Modem event callbacks */ apps_modem_event_init( &smtc_event_callback ); /* Init the modem and use apps_modem_event_process as event callback, please note that the callback will be called * immediately after the first call to modem_run_engine because of the reset detection */ smtc_modem_init( modem_radio, &apps_modem_event_process ); /* Re-enable IRQ */ hal_mcu_enable_irq( ); HAL_DBG_TRACE_MSG( "\n" ); HAL_DBG_TRACE_INFO( "###### ===== LoRa Basics Modem LoRaWAN Class A/C demo application ==== ######\n\n" ); /* LoRa Basics Modem Version */ apps_modem_common_display_lbm_version( ); /* Configure the partial low power mode */ hal_mcu_partial_sleep_enable( APP_PARTIAL_SLEEP ); while( 1 ) { /* Execute modem runtime, this function must be called again in sleep_time_ms milliseconds or sooner. */ uint32_t sleep_time_ms = smtc_modem_run_engine( ); SHT41GetTempAndHumi( &temp, &humi ); //HAL_DBG_TRACE_INFO( "temp = %.1f, humi = %.1f\r\n", temp, humi ); hal_mcu_set_sleep_for_ms( sleep_time_ms ); } } static void on_modem_reset( uint16_t reset_count ) { HAL_DBG_TRACE_INFO( "Application parameters:\n" ); HAL_DBG_TRACE_INFO( " - LoRaWAN uplink Fport = %d\n", LORAWAN_APP_PORT ); HAL_DBG_TRACE_INFO( " - DM report interval = %d\n", APP_TX_DUTYCYCLE ); HAL_DBG_TRACE_INFO( " - Confirmed uplink = %s\n", ( LORAWAN_CONFIRMED_MSG_ON == true ) ? "Yes" : "No" ); apps_modem_common_configure_lorawan_params( stack_id ); ASSERT_SMTC_MODEM_RC( smtc_modem_join_network( stack_id ) ); } static void on_modem_network_joined( void ) { ASSERT_SMTC_MODEM_RC( smtc_modem_alarm_start_timer( APP_TX_DUTYCYCLE ) ); ASSERT_SMTC_MODEM_RC( smtc_modem_adr_set_profile( stack_id, LORAWAN_DEFAULT_DATARATE, adr_custom_list ) ); } static void on_modem_alarm( void ) { smtc_modem_status_mask_t modem_status; uint32_t charge = 0; uint8_t app_data_size = 0; /* Schedule next packet transmission */ ASSERT_SMTC_MODEM_RC( smtc_modem_alarm_start_timer( APP_TX_DUTYCYCLE ) ); HAL_DBG_TRACE_PRINTF( "smtc_modem_alarm_start_timer: %d s\n\n", APP_TX_DUTYCYCLE ); ASSERT_SMTC_MODEM_RC( smtc_modem_get_status( stack_id, &modem_status ) ); modem_status_to_string( modem_status ); app_data_buffer[app_data_size++] = temp; app_data_buffer[app_data_size++] = humi; send_frame( app_data_buffer, app_data_size, LORAWAN_CONFIRMED_MSG_ON ); } static void on_modem_tx_done( smtc_modem_event_txdone_status_t status ) { static uint32_t uplink_count = 0; HAL_DBG_TRACE_INFO( "Uplink count: %d\n", ++uplink_count ); } static void on_modem_down_data( int8_t rssi, int8_t snr, smtc_modem_event_downdata_window_t rx_window, uint8_t port, const uint8_t* payload, uint8_t size ) { HAL_DBG_TRACE_INFO( "Downlink received:\n" ); HAL_DBG_TRACE_INFO( " - LoRaWAN Fport = %d\n", port ); HAL_DBG_TRACE_INFO( " - Payload size = %d\n", size ); HAL_DBG_TRACE_INFO( " - RSSI = %d dBm\n", rssi - 64 ); HAL_DBG_TRACE_INFO( " - SNR = %d dB\n", snr >> 2 ); switch( rx_window ) { case SMTC_MODEM_EVENT_DOWNDATA_WINDOW_RX1: { HAL_DBG_TRACE_INFO( " - Rx window = %s\n", xstr( SMTC_MODEM_EVENT_DOWNDATA_WINDOW_RX1 ) ); break; } case SMTC_MODEM_EVENT_DOWNDATA_WINDOW_RX2: { HAL_DBG_TRACE_INFO( " - Rx window = %s\n", xstr( SMTC_MODEM_EVENT_DOWNDATA_WINDOW_RX2 ) ); break; } case SMTC_MODEM_EVENT_DOWNDATA_WINDOW_RXC: { HAL_DBG_TRACE_INFO( " - Rx window = %s\n", xstr( SMTC_MODEM_EVENT_DOWNDATA_WINDOW_RXC ) ); break; } } if( size != 0 ) { HAL_DBG_TRACE_ARRAY( "Payload", payload, size ); } } static void send_frame( const uint8_t* buffer, const uint8_t length, bool tx_confirmed ) { uint8_t tx_max_payload; int32_t duty_cycle; /* Check if duty cycle is available */ ASSERT_SMTC_MODEM_RC( smtc_modem_get_duty_cycle_status( &duty_cycle ) ); if( duty_cycle < 0 ) { HAL_DBG_TRACE_WARNING( "Duty-cycle limitation - next possible uplink in %d ms \n\n", duty_cycle ); return; } ASSERT_SMTC_MODEM_RC( smtc_modem_get_next_tx_max_payload( stack_id, &tx_max_payload ) ); if( length > tx_max_payload ) { HAL_DBG_TRACE_WARNING( "Not enough space in buffer - send empty uplink to flush MAC commands \n" ); ASSERT_SMTC_MODEM_RC( smtc_modem_request_empty_uplink( stack_id, true, LORAWAN_APP_PORT, tx_confirmed ) ); } else { HAL_DBG_TRACE_INFO( "Request uplink\n" ); ASSERT_SMTC_MODEM_RC( smtc_modem_request_uplink( stack_id, LORAWAN_APP_PORT, tx_confirmed, buffer, length ) ); } } /* --- EOF ------------------------------------------------------------------ */
  2. Sending data from an Arduino microcontroller to the ThingSpeak platform using a GPRS module is not a novel project concept. While it may appear outdated in numerous regions, owing to the rapid evolution of communication technologies such as 2G, 3G, 4G, 5G, and the potential for 6G, this is not the case in my country. In India, 2G technologies remain prevalent, and major network operators have confirmed their intent to sustain 2G services. The legacy project documents that were originally designed with the SIM800 module may necessitate slight adjustments. This project will prove invaluable to those who continue to rely on 2G and GPRS technology. It offers essential support and guidance for individuals who intend to persist with these communication methods. Sending data from an Arduino microcontroller to the ThingSpeak platform using a GPRS module, specifically the SIM800, is a fundamental concept. The crucial aspect is that this communication method operates independently of Wi-Fi, constituting an IoT connectivity solution that relies on GPRS for data transmission. 1 / 2 In this project, LM35 temperature sensor data is being transmitted to the ThingSpeak platform through an Arduino Nano and a SIM800 module. The SIM800 module is leveraged to establish a GPRS connection, facilitating the transmission of data to ThingSpeak at specified intervals. To ensure a reliable connection between ThingSpeak and the hardware, users must configure the SIM800 module to establish a connection with their mobile network. This configuration encompasses setting the Access Point Name (APN) specific to their mobile carrier. It's important to note that the specific AT commands for this configuration may vary based on the user's chosen mobile network provider. For this project, I utilized the services of the network provider Airtel to establish the connection. Communication between the hardware components, specifically the SIM800 module, Arduino Nano, and ThingSpeak platform, relies entirely on AT commands. To ensure successful project implementation and effectively troubleshoot any issues that may arise, users must possess a basic understanding of SIM800 AT commands. This knowledge is crucial for configuring, managing, and diagnosing the communication process and resolving potential challenges during the project. Get PCBs For Your Projects Manufactured You must check out PCBWAY for ordering PCBs online for cheap! You get 10 good-quality PCBs manufactured and shipped to your doorstep for cheap. You will also get a discount on shipping on your first order. Upload your Gerber files onto PCBWAY to get them manufactured with good quality and quick turnaround time. PCBWay now could provide a complete product solution, from design to enclosure production. Check out their online Gerber viewer function. With reward points, you can get free stuff from their gift shop. Also, check out this useful blog on PCBWay Plugin for KiCad from here. Using this plugin, you can directly order PCBs in just one click after completing your design in KiCad. Networking testing The table provided below lists several common AT commands that serve to swiftly and effectively verify the proper functioning of the SIM800C's AT serial communication and network connection. Before proceeding with the steps outlined for the network communication demonstration, it is advisable to conduct a straightforward network test. This preliminary test ensures that the intended network connection is in working order and fully operational. TCP/IP Communication The SIM800 serial module's TCP/IP application offers two connection modes, selectable through the AT command `AT CIPMUX=<n>`. When `AT CIPMUX` is set to 0 (`AT+CIPMUX=0`), it operates in single-link mode. When `AT CIPMUX` is set to 1 (`AT+CIPMUX=1`), it operates in multi-link mode. By default, the module is configured in single-link mode. In single-link mode, the SIM800 serial module can function in both transparent and non-transparent transmission modes. In both of these modes, the module can be configured as either a TCP/UDP client or a TCP server. In multi-link mode, the SIM800 serial module operates solely in non-transparent mode. In this mode, it can serve as a TCP/UDP client, allowing for the establishment of a maximum of 6 connections. It can also be configured as a TCP server, with support for 5 TCP/UDP clients. SIM800C TCP/IP operates with a multi-client architecture by default, enabling up to five sockets for TCP or UDP connections. In the upcoming demonstrations, our focus will be on the client communication capabilities of the SIM800C module. Specifically, we will explore its operation in single-link non-transparent mode and transparent mode. Client communication in non-transparent mode Client communication in non-transparent mode refers to the way the SIM800C module interacts with remote servers or devices when it acts as a client, transmitting data using a specific protocol such as TCP or UDP. In non-transparent mode, the module sends and receives data through AT commands and does not directly pass data between the microcontroller and the remote server. This mode provides control over the data transmission process, allowing you to send and receive data, manage connections, and configure communication settings using AT commands. It is suitable for applications where you need fine-grained control over the communication process and want to ensure data integrity. To use the SIM800C in client communication in non-transparent mode, you will typically configure the module using appropriate AT commands and establish connections with remote servers or devices for data exchange. Client communication in transparent transmission mode Client communication in transparent transmission mode refers to the SIM800C module's ability to act as a client while allowing data to flow directly between the microcontroller (e.g., an Arduino) and a remote server or device. In this mode, the SIM800C module operates as a transparent bridge, forwarding data between the microcontroller and the remote server without the need for explicit AT commands to send or receive each piece of data. This mode simplifies data transfer by treating the SIM800C module as a transparent conduit. Data sent by the microcontroller is transmitted to the remote server without manual packetization, and data received from the server is forwarded to the microcontroller without manual processing. Using the SIM800C in transparent transmission mode is advantageous when you want to streamline data transfer and reduce the complexity of managing data packets and AT commands for each communication task. It's particularly useful for applications where data throughput and efficiency are essential. HTTP Communication This chapter provides an overview of the HTTP communication capabilities of the SIM800C module, focusing on HTTP GET and HTTP POST methods. For in-depth information about HTTP and FTP (File Transfer Protocol) communication with the SIM800C module, please refer to the "SIM800C Series_IP_Application_Note." This additional resource will provide comprehensive details and guidelines for utilizing these communication functions effectively. HTTP GET HTTP Post SIM800 Series_AT Command Manual_V1.10 SIM800 Series_TCPIP_Application Note_V1.02 Connection Diagram Establishing Communication Between Arduino Nano, SIM800, and ThingSpeak (Serial Monitor Data Captured During Project Execution). AT+CSTT="airtelgprs.com"<CR> OK AT+CIICR<CR> OK AT+CIFSR<CR> AT+CIPSPRT=0<CR> OK AT+CIPSTART="TCP","api.thingspeak.com","80"<CR> OK CONNECT OK<CR>AT+CIPSEND<CR>GET https://api.thingspeak.com/update?api_key=5XC1TCVONJVK1PNN&field1=20.00&field2=10.00 GET https://api.thingspeak.com/update?api_key=5XC1TCVONJVK1PNN&<SUB> SEND OK 6 CLOSED <CR>AT+CIPSHUT<CR>Temperature = 20.00 °C Humidity = 10.00 % SHUT OK AT<CR> OK AT+CPIN?<CR> +CPIN: READY OK AT+CREG?<CR> +CAT+CSTT="airtelgprs.com"<CR> OK AT+CIICR<CR> OK AT+CIFSR<CR> AT+CIPSPRT=0<CR> OK AT+CIPSTART="TCP","api.thingspeak.com","80"<CR> OK CONNECT OK<CR>AT+CIPSEND<CR>GET https://api.thingspeak.com/update?api_key=5XC1TCVONJVK1PNN&field1=20.00&field2=10.00 GET https://api.thingspeak.com/update?api_key=5XC1TCVONJVK1PNN&<SUB> SEND OK 7 CLOSED <CR>AT+CIPSHUT<CR>Temperature = 20.00 °C Humidity = 10.00 % SHUT OK AT<CR> OK AT+CPIN?<CR> +CPIN: READY OK AT+CREG?<CR> +CAT+CSTT="airtelgprs.com"<CR> OK AT+CIICR<CR> OK AT+CIFSR<CR> AT+CIPSPRT=0<CR> OK AT+CIPSTART="TCP","api.thingspeak.com","80"<CR> OK CONNECT OK<CR>AT+CIPSEND<CR>GET https://api.thingspeak.com/update?api_key=5XC1TCVONJVK1PNN&field1=20.00&field2=10.00 GET https://api.thingspeak.com/update?api_key=5XC1TCVONJVK1PNN&<SUB> SEND OK 8 CLOSED
  3. Are u looking for a way to connect the Arduino to the internet easily? Do you want to develop your IoT project quickly without much hassle? ARMA IoT might just be the thing for you! The simple and efficient Arduino shield is powered through a esp12f wifi module, which enables it to be connected to the wifi network. it also has an SD card slot for for extra data storage like its wired brethren the Ethernet Shield. The ARMA IoT goes a step further and provides an easy plug and play feature for most of the common devices such as sensors, motors, LCDs and relays. The ARMA IoT is a great place for beginners to start their IoT project, as it requires minimum time to setup the hardware all thanks to the plug and play feature. Even the programming is simplified through the help of apps such as Blynk, which provides easy feature of controlling the Arduino through your Android or iOS phone. Thingspeak an upcoming IoT platform is also supported by the shield. The ARMA IoT platform proves as a tool for aspiring beginners and also a prototyping tool for advanced users. IoT products can be developed much faster with the help of this board. Weather it is creating a simple IoT project such as blinking LEDs or controlling relays, or developing your own Home automation system, the ARMA IoT facilitates it all and things seem to happen rather quickly with all the features provided on the board. The wifi connection feature can provide fast communication between devices or two instances of ARMA itself, making it applicable for simple swarm robotics, wireless controllers etc. The applications can also be extended to simple robotics, Energy management systems and it does not stop there as it all depends upon the users creativity. To get started simple tutorials are provided on the YouTube page of ARMA IoT, the link below guides on the setup of Arduino and ARMA IoT with the help of Blynk app More tutorials and projects will be posted to help you make the most of the shield. Of Course there are also various DIY communities that can provide you with both support and inspiration for your upcoming IoT projects. thus ARMA is another simple board that has the ability to bind many devices together. The ARMA IoT is still undergoing a crowdfunding campaign in Indiegogo and is available for pre-order. https://www.indiegogo.com/projects/arma-iot-breakout-board-for-arduino#/
  • Create New...