Home Blog  





19 Aug 2014

OpenHardwareExG

OpenHardwareExG, An open source platform for ECG, EEG, EMG, ENG, and EOG signal processing:

The OpenHardwareExG is a platform for ECG, EEG, EMG, ENG, EOG, and evoked potential applications.

The OpenHardwareExG platform was originally developed as part of the eeg-mouse project.

Project goals
The main goal of the project is to build a device that allows the creation of electrophysiologic signal processing applications. In addition:
Hardware and software that we develop will have a free/open source license. We also prefer to use hardware and software that are free/open source.
We would like to keep the hardware DIY compatible (hand solderable, with parts that are readily available in small quantities, etc.)
For us, this is a hobby and learning project. It’s important to keep it fun, and take the time to learn along the way.

[via]

OpenHardwareExG: An open source platform for ECG, EEG, EMG, ENG, and EOG signal processing - [Link]

14 May 2014

Printoo’s flexible modules provide the ideal form factor to quickly create first product concepts for smart wearables devices. BITalino (http://www.bitalino.com/) is revolutionizing DIY health tracking by making physiological sensors to measure the body’s biosignals accessible to all. Combine the two and it has never been easier to create revolutionary smart wearable concepts to life.

With Printoo, a number of inputs were already available: accelerometer, temperature sensor, capacitive and light sensors. BITalino’s modules for Electromyography (EMG), Electrodermal Activity (EDA) and Electrocardiogram (ECG) can be easily connected to Printoo through a flexible coupling board. Combine these inputs with flexible LEDs (in strip or matrix form), electrochromic displays, a sound buzzer, as well as Bluetooth Low Energy connectivity, and the possibilities are endless.

BITalino – Create projects with physiological sensors - [Link]

 

16 Apr 2014

smalllighthe

by Hanne Degans:

Holst Centre and IMEC have unveiled a prototype flexible health patch weighing just 10g – half the weight of current products. The patch uses real-time electrocardiogram (ECG), tissue-contact impedance and accelerometer information to accurately monitor physical activity. Thanks to advanced system in package (SiP) technology from ShinkoElectric Industries, the electronics module measures less than two by two centimeters. The high accuracy algorithms, low power consumption, and small size and weight make it ideal for consumer applications.

Small, light health patch with enhanced accuracy - [Link]

4 Aug 2013

05b776acae6e2bfd28d9baf525589318.media.600x542

Analog Device’s AD8232 is an integrated signal conditioning block for ECG and other biopotential measurement applications. It is designed to extract, amplify, and filter small biopotential signals in the presence of noisy conditions, such as those created by motion or remote electrode placement. This design allows for an ultralow power analog-to-digital converter or an embedded microcontroller to acquire the output signal easily.

The device can implement a two-pole high-pass filter for eliminating motion artifacts and the electrode half-cell potential. This filter is tightly coupled with the instrumentation architecture of the amplifier to allow both large gain and high-pass filtering in a single stage. An uncommitted operational amplifier enables the creation of a three-pole low-pass filter to remove additional noise. The user can select the frequency cutoff of all filters to suit different types of applications. [via]

Single-lead Heart Rate Monitor Analog Front End - [Link]


10 Jul 2013

heartbeat4-600x570

Raul from Coding Laboratory has designed a DIY ECG project using an Arduino and Xoscillo:

To display the wave I am using XOSCILLO, a very cool and open source tool (which I wrote :P) that converts your Arduino into an oscilloscope.

[via]

Minimal ECG using an Arduino and Xoscillo - [Link]

20 Apr 2013

diy-ecg-pulse-oximeter-lm324-opamp-sound-card-525x393

Scott W Harden writes:

I re-vamped my DIY ECG project. This new project is fully documented and uses extremely common and cheap parts, all of which could be purchased at RadioShack. It serves at both an ECG *and* a pulse oximeter, depending on which leads are attached. It uses a single chip (LM324, a quad operational amplifier) with a virtual ground to eliminate the need for a negative voltage. As a pulse oximeter with a 12V supply it outputs clean 10V swings when pulses occur. It’s intentionally unsophisticated, and made to be easy to replicate by anyone interested in electronics. Although you could view its output on an oscilloscope, it’s designed to be output into a PC sound card for recording (if attenuated to microphone levels). I even describe how to spectrally process the data on the computer to clean it up, downsample it, and graph it in Excel or with a Python script.

Simple DIY ECG + Pulse Oximeter - [Link]

 

21 Mar 2013

ECG

Imec demonstrated a low-power (20µW), intra-cardiac signal processing chip for the detection of ventricular fibrillation at this week’s International Solid State Circuits Conference (ISSCC 2013) in San Francisco with Olympus. An important step toward next-generation Cardiac Resynchronization Therapy solutions, the new chip delivers innovative signal processing functionalities and consumes only 20µW when all channels are active, enabling the miniaturization of implantable devices. [via]

Robust and accurate heart rate monitoring of the right and left ventricles and the right atrium is essential for implantable devices used in cardiac resynchronization therapy, and accurate motion sensor and thoracic impedance measurements to analyze intrathoracic fluid are critical for improving clinical research and analysis of intracardiac rhythm. Extremely low power consumption is also necessary to reduce the size of cardiac implants and improve the patient’s quality of life.

Carry a Chip in your Heart - [Link]

9 Nov 2012

Pittsford, NY:  imPulse(tm) is a personal, iPhone-compatible, handheld ECG Touch Monitor that will be introduced at this year’s Electronica Show in Munich, Germany, designed using unique EPIC touch sensors.  Created by the sensorʼs manufacturer Plessey Semiconductors,  imPulse(tm) is aimed at the home health market, and will allow the routine, quick and accurate recording of ECG signals outside of the medical environment – without the need for conductive gel or skin preparation. Read the rest of this entry »

16 Sep 2012

Saelig Co. Inc. announces the availability of the PS25203 EPIC Sensor (Electric Potential Integrated Circuit) for a wide range of contactless ECG and movement sensing in automotive applications, including driver fatigue monitoring and seat occupancy.  The EPIC sensor is a completely new, award winning, patent-protected sensor that can rapidly measure electric potential sources such as electrophysiological signals or spatial electric fields.

The EPIC Sensor revolutionizes the way movement sensing, medical ECG/EEG/EOG, proximity non-touch switching, or even gesture recognition signals are taken in vehicles.  It can be used as a dry contact ECG sensor without the need for potentially dangerous low impedance circuits across the heart.   By detecting changes in the electric field, the EPIC sensor can also drive a relay to act as a simple non-touch electric switch. The EPIC sensor can be employed in a proximity mode or to detect specific kinds of movement as a gesture recognition device.

PS25203 EPIC Sensor – For Low-cost Automotive Detection Systems - [Link]

19 Mar 2012

Holst Centre, imec and DELTA announce an innovative body patch that integrates an ultra-low power electrocardiogram (ECG) chip and a Bluetooth Low Energy (BLE) radio. This unique combination fuses power-efficient electronics and standardized communication, opening new perspectives for long-term monitoring in health, wellness and medical applications. The system integrates components from Holst Centre and imec’s R&D programs. It is designed in collaboration with DELTA and integrated in DELTA’s ePatch platform. 

The ECG patch measures up to 3 lead ECG signals, tissue-contact impedance and includes a 3D-accelerometer for physical activity monitoring. The data are processed and analyzed locally, and relevant events and information are transmitted through Bluetooth Low Energy. The patch is capable of monitoring, processing and communication on a minimal energy budget. When computing and transmitting the heart rate, the entire system consumes a mere 280µA at 2.1V, running continuously for one month on a 200mAh Li-Po battery. When transmitting accelerometer data (at 32Hz) on top of the heart rate, the power consumption remains below 1mA in continuous operation, giving about 1 week of autonomy.

Innovative technology for an ECG patch - [Link]



 
 
 

 

 

 

Search Site | Advertising | Contact Us
Elektrotekno.com | Free Schematics Search Engine | Electronic Kits