High Speed Ecosystem Support and Calamity Monitoring System

The innovation of equipment for calamity detection and monitoring are quite rampant. It is because of consecutive aggression of storms and earthquakes in different parts of the world. As to observe the different scenarios, these are not merely natural causes, there are some or most of it is manmade. A good example of it is a storm, which is the combination of hot and cold air. These hot and cold airs are natural but the rapid change of air temperature is not natural. Aside from air, water is another major contributor to global warming. Abnormalities that happened to the body of water affect the entire ecosystem, which also affect both living and nonliving things. With such cases, the environment needs care from people. This simple design of ecosystem support and calamity detection will be a great help in protecting the nature and preventing major disasters from occurring. It features two sensing parameters such as pressure and pH level. It has Fast-mode Plus (Fm+) capability on its buses, which can be configured to communicate up to 64 slaves in one serial sequence with no intervention from the CPU. It can communicate remotely and locally where GSM is unavailable.

The design is comprised of SST89E52RC-33-C-PIE legacy microcontroller as the main processor of the device. It is interfaced with the PCA9661 parallel bus to 1 channel Fm+ I2C-bus controller with 74HC237D as the decoder. This interface provides the ports for the sensors, which it communicates at high speed data transfer. The two sensor attached to the I2C-bus controller are SEN-10972 pH sensor and MPL115A1T1 miniature I2C digital barometer. The SEN-10972 pH sensor is used to monitor the pH level of water in which a change of pH level signifies abnormalities or some toxic chemicals that are present in water. The MPL115A1T1 barometer is used to monitor the possibilities of a developing tropical storm or typhoon. The GSM module is for remote data communication with central station or any portable device that is GSM communication capable. In case of a local monitoring and GSM signal dead zone, a built in RF transmitter will trigger to transmit data to any portable device or stations within the range of RF transmission.

The innovation of this device will surely help both the people and environment. It can result to a lesser number of casualties and agricultural damages. It can help the development of municipalities, cities, and/or even nations since it saves a lot of investments and other types of income. This design can be integrated to several developments that can provide more efficient and useful technology instrument for the people and the environment.

High Speed Ecosystem Support and Calamity Monitoring System – [Link]

18 PIN PIC Development Board


The PIC 18 PIN (DIP) Development / Evaluations Board demonstrates the capabilities of Microchip’s 8-bit microcontrollers, specifically, 18 Pin PIC16F1847. It can be used as a standalone demonstration board with a programmed part. With this board you can develop and prototype with all Microchip’s 18 PIN PIC microcontrollers. The board has a Reset switch and status LEDs. On board 3.3 V and 5V DC regulators allows using 3V and 5V PICs, This board support both 3.3V low power and normal 5V operation. All I/O Pins out with 2 x female headers

Development Board Features:

  • 16 I/O Ports
  • Onboard 5V and 3.3V Supply
  • 3.3V or 5V Supply selection by jumper
  • Dual line I/O
  • On board Power Indication
  • On-board ICSP Port (PICKIT2 Standard Programming Port)
  • Well labeled legends
  • All outputs has provision for LEDs for output indication
  • Replaceable PIC Microcontroller,
  • Crystal and capacitor mounting under the PCB

18 PIN PIC Development Board – [Link]

ESP8266 remote controlled sockets


Rui Santos published a new project, an ESP8266 remote controlled sockets:

In this project your’re going to build a web server with an ESP8266 that can control remotely any sockets (safely!).

ESP8266 remote controlled sockets – [Link]

Arduino – How to use a Force Sensitive Resistor


by codebender_cc @ instructables.com:

In this tutorial you will learn how to use an FSR – Force Sensitive Resistor with Arduino to fade an LED. This sensor is a variable resistor just like a photocell or flex sensor. The resistance changes by applying pressure on it.

Arduino – How to use a Force Sensitive Resistor – [Link]

Laser Diode Driver


Laser Diode Driver project will help you safely drive (constant current) a 3 mW visible Laser Diode for your application.

  • Input supply – 2.5 to 6 VDC
  • Onboard preset to adjust the current flow to the Laser Diode
  • Power-On LED indicator
  • Header connector for easy input supply and LASER DIODE module connection
  • Laser diode is not included
  • Circuit is designed around Sanyo DL3148-025 LASER DIODE
  • PCB dimensions 37 mm x 42 mm

Laser Diode Driver – [Link]

8V97051 Low Power Wideband Fractional RF Synthesizer

This design features a low power wideband RF synthesizer that is used in GSM receiver cards. It has dual differential and open drain outputs with frequency range of 34.375MHz to 4400MHz(in continuous range). The logic compatibility is 1.8V while the system is running on a single 3.3V supply. It has -143dBc/Hz Phase Noise (PN) performance at 1MHz Offset for every 1.1GHz output. It is also capable of mute function at RF_OUT that is accessible via mute pin or SPI command. It is low power with only 380mW average power consumption while RF_OUTB is not in used.

The design is comprised of 3 major parts. The first part consists of IDT8V97051NLGi wideband RF synthesizer/PLL supports the output frequencies with Voltage Controlled Oscillator (VCO). The temperature compensated crystal oscillator close to the RF input helps in the precision of signal while the other parts are filters that are used in various purposes like minimizing undesired noise. The second part consists of the USB 2.0 high speed to UART/FIFO IC that is used for system interface while the I2C-bus to SPI bridge IC controls the sequences, protocol, and timing of the signal. The last part is power supply management of the system in which it is provided with RC filters in every line to ensure minimal noise are included in the supply.

The design is applicable in multi-carrier, multi-mode Frequency Division Duplexing (FDD) and Time Division Duplexing (TDD) base station radio card. It optimizes multi-service base stations during its service as a local oscillator that generates a large variety of frequencies to mixers while maintaining excellent PN.

8V97051 Low Power Wideband Fractional RF Synthesizer – [Link]



Maximo Robot Arm – for kids and even big kids


The Maximo Robot Arm is the greatest way to discover robotics. Accessible, fun and affordable, Maximo is designed for everyone.

Maximo Robot Arm comes with a laser-cut acrylic body. It was designed to offer the highest quality while remaining one of the most affordable robotic arms on the market. Its 5-axis range of motion allows for movements similar to assembly line robots.

Maximo is our second generation of robotic arms. Three years ago, we created MandleBot, a 5-axis aluminum robotic arm currently being used in schools, robotics clubs, summer camps and even factories. We have enjoyed sharing our passion for robotics with a lot of people and it has inspired us to now do it on a larger scale.

Maximo Robot Arm – for kids and even big kids – [Link]

LT3091 – –36V, 1.5A Negative Linear Regulator with Programmable Current Limit


The LT®3091 is a 1.5A, low dropout negative linear regulator that is easily paralleled to increase output current or spread heat on surface mounted boards. Designed with a precision current reference followed by a high performance rail-to-rail voltage buffer, this regulator finds use in applications requiring precision output, high current with no heat sink, output adjustability to zero and low dropout voltage. The device can also be configured as a 3-terminal floating regulator.

LT3091 – –36V, 1.5A Negative Linear Regulator with Programmable Current Limit – [Link]


Open source pocket USB oscilloscope; 30 MHz, multi-platform


by Graham Prophet @ edn-europe.com:

Running on Apple iPad, Android, Microsoft Windows and Linux, LabNation’s (Antwerp, Belgium) open source USB oscilloscope, SmartScope, is the result of a Kickstarter campaign commenced in 2014 – the project raised 645% of the funding goal within 30 days.

Believed to be the first test equipment designed to run on multiple operating systems and platforms such as smartphones, tablets and PCs, the lightweight SmartScope is powered directly from the host’s USB interface suiting it for many test and measurement applications far from the workbench.

Open source pocket USB oscilloscope; 30 MHz, multi-platform – [Link]

RePhone kit: World’s first open source and modular phone


Seeed Studio has announced that RePhone, an open source and modular phone kit:

With Rephone you can:
1.Create your own phone in minutes with the slim MODULES, accessible SOFTWARE, and customizable Phone Enclosures.
2.Hack anything around you, giving inanimate objects the power of cellular communication. Have a conversation with your pets, plants, toys, motorcycle helmets, robots, or drones through RePhone’s GSM and 3G functions.

RePhone is a set of tools and components that allows everyone including students, teachers, makers, hackers, geeks, artists, developers and engineers rethink, remix, redesign and remake the phone.
RePhone comes in three kits RePhone Core Module GSM + BLE, RePhone Core Module 3G and RePhone kit Create.

RePhone kit: World’s first open source and modular phone – [Link]