How to connect a Solar Inverter in 10 minutes

Let’s connect a solar power inverter for AC voltage output in just 10 minutes.

How to connect a Solar Inverter in 10 minutes – [Link]

Connect Raspberry Pi Easily To IoT with Particle

particle-verticalParticle is an Internet of Things device platform that enables businesses to quickly and easily build, connect and manage their connected solutions. Particle launched on Kickstarter in 2013 with the vision of making the Internet of Things easy and accessible.

Particle was listed as one of Fast Company’s Most Innovative Companies of 2015 and has been featured in a number of Gartner reports on IoT solutions.

Particle announced that they have been working with the Raspberry Pi Foundation to provide free IoT cloud support for the 10,000,000 Raspberry Pi devices already out in the world.

particle-pi-image

All Raspberry Pi devices will be able to connect to the Particle Cloud, and to benefit from key IoT features such as secure messaging, over-the-air updates, simplified GPIO control, data visualization, cloud integrations, and batch script execution out of the box.

The Raspberry Pi + Particle integration will bring some unique features to the Raspberry Pi

Run simple Arduino code on your Pi

No more complicated tooling, setup, or scripting to perform simple tasks like trigger a pin, blink an LED, or read a sensor value. With Particle’s Raspberry Pi Agent, you can write simple Arduino and C/C++ code that compiles and runs as an executable on your Raspberry Pi. Take advantage of Particle’s hundreds of embedded libraries to make interacting with sensors and controlling your Pi’s GPIO a breeze.

local_build_ide-5

Remote Control of your Pi over the web
  • Over the Air Firmware Updates
  • Batch Script Execution
  • Remote Data Collection
  • Integrations with IFTTT, Google Cloud, and other popular web services through Webhooks.

Access to the Particle Cloud is free! Signing up for the beta is open now and if you are interested you should sign up soon since Particle will be providing access to the first 1,000 Particle accounts at the end of November (21 November) with remaining invitations sent in the following weeks.

Particle’s intention is to provide this integration as a free prototyping resource to all Raspberry Pi developers. Thus, you only start paying when you create a product with more than 25 devices. You can check pricing structure here.

Particle is a scalable, reliable and secure IoT cloud platform and there are already some companies that use Particle to connect and ship their products like IDEO and Keurig. It also has some hardware development kits that work amazingly with the platform.

For more details, you can check Particle documentation and Github. More about this integration is featured on Adafruit ASK AN ENGINEER series where Particle’s CTO Zachary Crockett answers questions and gives a live demo of Raspberry Pi on the Particle Cloud. Check it out!

Web Controlled IoT Notice Board Using Raspberry Pi 3

The concept of web controlled notice board is getting more popular day by day for its wide range of applications in the practical field. As an IoT project, simple web controlled notice board can be made using a Raspberry Pi. Saddam at CircuitDigest designed the project where you can send the notice message through web browsers and it will be displayed on a 16×2 LCD display connected to the Pi.

In this Web Controlled Notice Board, we have created a local web server for demonstration, this can be a global server over the internet. At the Raspberry Pi, we have used 16×2 LCD to display message and Flask for receiving the message over the network. Whenever Raspberry receives any wireless message from a Web browser, it displays on the LCD.

Web Controlled IoT Notice Board : How It Works
Web Controlled IoT Notice Board : How It Works

Parts List:

  1. Raspberry Pi 3 (any model)
  2. Wi-Fi USB adapter (if you’re not using Raspberry Pi 3)
  3. 16×2 LCD
  4. Bread Board
  5. Power cable for Raspberry Pi
  6. Jumper wires
  7. 10K Pot

Circuit Diagram:

The circuit is very easy to make and uses Raspberry Pi as the brain. Few external components are used. You just need to connect the display to Raspberry Pi as per following instructions:

RS, RW and EN pins of LCD are directly connected to pin 18, GND and 23. Data pins of LCD D4, D5, D6, D7 are directly connected to Raspberry Pi’s GPIO 24, 16, 20, 21. A 10K pot is used to control the brightness of LCD.

Circuit Diagram of Web Controlled Notice Board Using Raspberry Pi 3
Circuit Diagram of Web Controlled IoT Notice Board Using Raspberry Pi 3

NOTE: If you are not using Raspberry Pi 3, you must use a USB to Wi-Fi adapter for lower versions of Raspberry Pi as they don’t have inbuilt Wi-Fi like Raspberry Pi 3.

The Coding Part:

Coding is the most important part of this project. Here you need only two codes:

  1. One is an HTML code to create the web page.
  2. Another one is a Python script, that uses Flask as mentioned earlier.

In the HTML code, a simple text box and a submit button are created so that you can enter a Notice Message in TextBox and then submit it to the server by clicking on Submit button.

The Python script is used to send data to the server (Raspberry Pi) and show the data i.e Notice Message on the LCD display. One thing to keep in mind, you should install Flask first using the command:

$ pip install Flask

Now install required libraries for Flask, and define display ports:

from flask import Flask
from flask import render_template, request
import RPi.GPIO as gpio
import os, time

app = Flask(__name__)

RS =18
EN =23
D4 =24
D5 =16
D6 =20
D7 =21
... ......
..... ......

NOTE: You need to copy-paste the HTML code in some text editor and save the file with .HTML extension. Then put this HTML file in the same folder where you have put your interpreted Python Code file.

So this is how you can send a message from your computer or smartphone to the Raspberry Pi LCD and make an IoT-based Wireless Notice Board controlled over The Web.

CHIP Computer Project: CPU Temperature Monitor with OLED display SSD1306

Today educ8s.tv is going to connect an OLED display to the CHIP 9$ computer in order to monitor its CPU temperature in real time.

I received the CHIP single board computer about a year ago. It is an impressive board, it costs $9 and it offers a 1GHz CPU, 256MB of RAM wifi Bluetooth and many more things. You can watch my review of the CHIP computer by clicking on the card here. As you can see the CHIP computer is a lot smaller than the Raspberry Pi 3 board and of course it costs a lot less. One year later, the software developed for the CHIP computer is mature and we can easily build some projects with it

CHIP Computer Project: CPU Temperature Monitor with OLED display SSD1306 – [Link]

Introducing “Buy Parts” Electronics-Lab New Feature

In partnership with OEMSecrets, we are pleased to launch a new section in our website. “Buy Parts” is a price-comparison search engine that helps you save time and money, by finding the cheapest price and the best offer while buying electronic components online.

capture

This tool provides an electronic components comparison from leading distributors and manufacturers in the electronics market, such as Farnell, element14, Mouser, TIstore, etc. It also offers datasheets and part images from suppliers to give you a better understanding of products you are purchasing.

The new search engine comes with these features:

  • Price comparison to help you find the cheapest price.
  • Quantity filter to find you the total cost of the part.
  • Quick datasheet downloads to confirm part specifications.
  • Order with ease with our add to basket ‘buy now‘ buttons.
  • Line by line comparison results dedicated to save your time.
  • Part images available for visual verification before ordering.
  • Quick-find supplier navigation to find favourites.
  • Currency conversions, your zone your currency.

capture2

It is very simple to use. Just enter a part name in the search box and start saving time and money!

Program a mBot With Scratch And Arduino

Makeblock was founded in 2012 in Shenzhen as the world’s first open-source robot and programing platform. With more than 400 mechanical components, electronic modules, and software tools, the company is determined to bring meaningful STEM education opportunities and the maker mindset to the mass consumer market to make a real difference in society’s future with robotics.

pic_1

Makerblock has a variety of products and one great product is mBot, a robot better fit education and home use. It is simple to use and affordable, you can get mBot for $24 or with bluetooth for $99.

The mBot is designed especially for mBlock Scratch-based language to help teachers and kids to have hands-on experience about robots and explore STEM education.

 

World’s very first Scratch 2.0 branch that can upload a program into Arduino based boards
World’s very first Scratch 2.0 branch that can upload a program into Arduino based boards
mBot overview

Makeblock keeps delivering tutorials about its products and the recent one was a line follower mBot on Insructables.

To do this project you need the following tools

fpk3ufsiva4gsly-medium

Mechanical part list
  • 1*Metal Base Plate
  • 2*TT Gear Motor
  • 2*Wheel
  • 2*Tyre
  • 1*Plastic Universal Wheel
  • 1*Magic Tape 20*30mm
  • 6*Brass Stud M4*25
  • 14*Socket Cap Screw M4*8
  • 6*Nut M4
  • 4*Nut M3
  • 4*Philip’s Head Screw M3*25
  • 2*Tapping Screw M2.2*9.5

90053-500x500

Electronic Modules List

You only have to put each element in the right place and to tighten some screws. The image below shows how to assemble the pieces together.

mbot

The mBlock is a customized version of scratch. It is easy to use mBlock to interact with electronic modules. To make the project works, you should first program the Control Board (Compatible with Arduino) using this code of mBlock.

f37tvruiva4gsx1-medium

You can also program it using Arduino IDE since it makes it easy to write code, upload it to the I/O board, and interact with mBot. Line following is one simple code for controlling the mBot by Infrared Controller.

#include "mBot.h"
#include "MePort.h"
#include "MeIR.h"
#include "MeDCMotor.h"

MeBoard myBoard(mBot);
double angle_rad = PI/180.0;
double angle_deg = 180.0/PI;
MeIR ir;
MeDCMotor motor_9((MEPORT)9);
MeDCMotor motor_10((MEPORT)10);

void setup() {
 ir.begin();
}

void loop() {
 if(ir.keyPressed(64)){
  motor_9.run(255);
  motor_10.run(255);
 } else {
  if(ir.keyPressed(25)){
   motor_9.run(-255);
   motor_10.run(-255);
  } else {
   if(ir.keyPressed(7)){
    motor_9.run(255);
    motor_10.run(-255);
   } else {
    if(ir.keyPressed(25)){
     motor_9.run(-255);
     motor_10.run(255);
    } else {
     motor_9.run(0);
     motor_10.run(0);
    }
   }
  }
 }
 ir.loop();
}

You can learn more about using Arduino for mBot here.

This is what should mBot do!

You can build your own adventure, play some games or make some functions completed autonomously using mBot, such as playing football, ultrasonic obstacle-avoiding and following line. Makeblock is opening wide doors for innovation by making STEM and hands-on experience available for kids.

A new product from MakerBlock is now live on Kickstarter. AirBlock, the first modular drone that can be turned into a hovercraft, car, and more. You can order this drone from the project’s page for $99.

More details and updates can be reached at the official website. Also you can access codes and source files at Github.

WPS80 digital soldering station

pykqbhvzclsgbk8ktr9gl0b3

James @ seeed.cc show us how to build a DIY digital soldering station using a WPS80 soldering iron.

I always liked soldering tools with good quality. Though I currently have a nice ELV 50 Watts digital soldering station already, I decided to build my own soldering base station using an existing WPS80 soldering iron manufactured by Weller. After looking on the internet to see others DIY projects ,I decided to develop a special one, with several improvements in the design.

WPS80 digital soldering station – [Link]

Sensor IC gives accurate RH and temperature from 2x2mm outline

161109edne-ams_pp_ens210_rgb

ams’ ENS210 sensor module features temperature measurement accuracy of ±0.2°C over the entire range 0°C to 70°C; the device also outputs relative humidity measurements on its I²C interface, enabling, ams says, portable and connected smart home devices to improve performance and implement new features. By Graham Prophet @ edn-europe.com:

The ENS210 is an high performance digital output sensor which monolithically integrates one relative humidity sensor and one high-accuracy temperature sensor. The device is encapsulated in a QFN4 package and includes an I²C slave interface for communication with a master processor.

Transfer Files Between Raspberry Pi and Computer

Sometimes you need to send or receive files from your Raspberry Pi robot, this may be a bit complex process as there is no direct method. You may think about unmounting the SD card from the Raspberry then connecting it to PC, or using a cloud storage to upload and download files, but these methods may increase the complexity of your project.

pi-sd-3

Dexter Industries, an American educational robotics company that develops robot kits, presents in this tutorial three simple ways to transfer files between PC and Raspberry Pi. These methods require a Raspberry Pi with SD card mounted and a PC, and both must be connected to the same network.

The first method is using the Windows file explorer that works on Windows 7 and above. It is very simple, just a right click on computer icon, choose “Map network drive”, and insert your Raspberry IP address. You can then transfer files with the simple copy paste method.

Another way uses File Transfer Protocol (FTP). It is a standard network protocol used to transfer computer files between a client and server on a computer network. There are a lot of free and open-source FTP programs for all platforms, such as FileZilla, WinSCP, SmartFTP, and others.

The following video explains  how to establish a connection between your Raspberry Pi and PC using FileZilla. Once you’ve successfully connected with the FTP software, you can drag and drop files between the Raspberry Pi and the PC.

The last method is editing Raspberry Pi files using Notepad++, a free source code editor which supports several programming languages running under the MS Windows environment. It is a great tool for editing codes and files on your PC, and also on your Raspberry Pi!

After downloading and installing Notepad++ install “NppFTP” plugin, create a profile for your Raspberry Pi connection, and enter the login information. After the connection is successfully created, you should see a file tree appear in the box on the right hand side. You are able now to edit existing files and add new files and folders.

Orange Pi PC2 $20 Quad core Linux Computer

Shenzhen Xunlong Software CO., Limited is now offering  a new addition to the community of single board computers. The latest edition of Orange Pi is the $20 Orange Pi PC 2.
Even though this 85mm×55mm board isn’t as cheap as the $4 VoCore2 Lite, its $20 price tag is justified by the hardware it packs inside. And, it also saves you $15 if you don’t want to go for the $35 Raspberry Pi 3. Orange Pi PC 2 is a single-board quad-core 64-bit computer capable of running Android 4.4, Ubuntu, Debian, Banana Pi, and Raspberry Pi images.

best-seller-orange-pi-pc-h3-support-the-lubuntu-linux-and-android-mini-pc-beyond-raspberry

The board includes an Ethernet port and three USB ports. It has 1GB of memory, H5 High Performance Quad-core 64-bit Cortex-A53, and a standalone graphics chip. It supports camera input as well as HDMI out and even has a physical power switch and IR blaster. It takes power using a separate power connector despite the fact that it has a micro-USB port. The absence of WiFi and Bluetooth is a slight turn-down but USB 2.0 ports can be used to add these things.

orangepipc2_info

Full hardware specifications

CPU: Allwinner H5 64-bit Quadcore (Cortex-A53).
RAM: 1GB DDR3.
GPU: Mali-450.
Storage: 2MB NOR Flash, up to 64GB via MicroSD card.
Connectivity: 2xUSB 2.0, 1xUSB 2.0 OTG, HDMI, 10/1000 RJ45, IR receiver, camera interface, 40-pin header.
Audio: 3.5mm jack, inbuilt mic.
Operating System: Ubuntu Debian, Raspbian, Android.
This board is an advanced edition of the recent Orange Pi PC with different CPU, GPU and Ethernet connection.

Getting Started with Orange Pi PC 2

  1. You need to get these accessories to start using your Orange Pi:
    TF card (minimum 8 GB), HDMI to HDMI lead or HDMI to DVI lead (for monitors with DVI input), AV video lead, DC power adapter, keyboard and mouse, plus Ethernet cable/USB WiFi and Audio lead as an option.rms
  2. Prepare your TF card
    1. Insert your TF card into your computer. The size of TF should be larger than the OS image size, generally 8GB or greater.
    2. Format the TF card. (using this tool for Windows, and some commands for Linux)
      1. Run fdisk –l  /dev/sdx command to check the TF card node.
      2. Run umount /dev/sdxx to unmount all the partitions of the TF card.
      3. Run sudo fdisk /dev/sdx command to configure TF card. Use o command to delete all partition of TF card and use n command to add one new partition. Use w command to save change.
      4. Run sudo mkfs.vfat /dev/sdx1 command to format the new created partition of TF card as FAT32.
        (x should be replaced according to your TF card node)
    3. Download the OS image from the Downloads webpage.
    4. Unzip the download file to get the OS image
    5. Write the image file to the TF card using this software on Windows and this command on Linux: sudo dd bs=4M if=[path]/[imagename] of=/dev/sdx (x should be replaced according to your TF card node)
  3. Set up your Orange Pi PC following the steps in the diagram
    sketch_map_pipc_en
    Note : Avoid using the micro-usb power connector, because micro-usb power does not supply power.
  4. Shut down your board
    You can use the GUI to shut down the Orange Pi PC2 safely or just run this command in the terminal:  sudo halt or  sudo shutdown –h now
    This will shutdown the PI safely, (just use the power key to turn off might damage the TF-cards file system). After that you can press the power key for 5 seconds to turn it off. Full guide and any updates on the OS image will be available here.

This open source SBC (single board computer) is a great option to start building IoT devices, DIY projects and for development purposes. You can use it as a mini-computer, a wireless server, music and video player,etc. You should remember that the limit is the sky when it comes to open source boards.

The Orange Pi PC 2 is up for sale on AliExpress and you can get it now for $20. You can apply for free products from Orange Pi through this application by defining your purpose of using the product and following the steps mentioned here.

You can check the official website to find more details and updates about Orange Pi PC2 and other boards from Orange Pi. Codes and source files are available at Github.