Writing to flash and EEPROM on the tinyAVR 1-series

Update your tinyAVR code to access memories when using 1-series tinyAVRs. Link here (PDF)

On tinyAVR® 1-series devices, access to Flash memory and EEPROM has been changed from that on previous tinyAVR devices. This means that existing code for writing to Flash and EEPROM on older devices must be modified in order to function properly on tinyAVR 1-series devices. This application note describes what has changed and how to adapt code to these changes.

Writing to flash and EEPROM on the tinyAVR 1-series – [Link]

Panasonic PAN9420 is a standalone fully embedded Wi-Fi Module

Building an Internet of Things infrastructure most times depends upon the wireless connectivity, but there are many options for wireless and not every device is IP addressable – a requisite feature for IoT. There are many wireless interface options, Wi-Fi, Bluetooth Low Energy (BLE), ZigBee, Z-Wave, Lora, RFID and Satellite, each with their own unique balance of power, range, data rates, mesh networking, interference immunity, and ease of use. However, some interfaces are not yet native-IP enabled, so cannot be addressed directly or exchange data with other devices and servers over the Internet. These then require a separate gateway, adding expense and complexity to the final solution.

PAN9420 Wi-Fi module

This is where Wi-Fi stands out: it is based on the IEEE 802.11 standards with native IP addressability, is ubiquitous, well understood, and can scale well in terms of data rates to optimize for power consumption. The PAN9420 is a 2.4 GHz ISM band Wi-Fi-embedded module from Panasonic.

The PAN9420 is a fully embedded stand-alone 2.4 GHz 802.11 b/g/n Wi-Fi module and the successor of the PAN9320.  It includes a wireless radio and an MCU for easy integration of Wi-Fi connectivity into various electronic devices. The module is specifically designed for highly integrated and cost-effective applications and includes a fully shielded case, integrated crystal oscillators, and a chip antenna.

The PAN9420 is a 29.0×13.5×2.66mm SMT package with a fully shielded case and a high-performance Marvell® 88MW300 MCU/WLAN System-on-Chip (SoC) inside, an integrated crystal oscillator at 38.4MHz, a clock crystal at 32.768KHz, medium access controller, encryption unit, boot ROM with patching capability, internal SRAM, and a chip antenna with option for a selectable external antenna. It also comes with an integrated web server, over-the-air firmware update, two UART interfaces, and a full security suite.

Block Diagram for the PAN9420 module

Simultaneous Wi-Fi connections can easily be implemented from the module with other smart devices as a result of its support for parallel access point and infrastructure mode. Client (STA), a micro access point (μAP), and Ad-hoc mode (Wi-Fi Direct) applications are enabled by the pre-programmed Wi-Fi SoC firmware. Raw data can be sent over the air from UART to smart devices, web servers, or PC applications with the transparent mode.

Unlike the PAN9320, the PAN9420 has an enhanced temperature range of -40 °C to +85 °C and reduced power consumption in transmitting, idle and power down. The PAN9320 and PAN9420 both have the same PCB configuration making it easy to migrate from PAN9320 without any changes to the PCB design. With a power supply of 3.0 to 3.6V and a power down mode current consumption less than 1mA, the PAN9420 is suitable for low power applications and should run comfortably with coin cell batteries.

It’s available in an Evaluation Kit containing one PAN9420 Mother Board (MB), one PAN9420-ETU daughter board which includes the PAN9420 FCC approved version, and one USB-cable packaged in a large case. The PAN9420 FCC version module already comes preinstalled with a firmware for easy deploying IoT based applications. The Evaluation Kit is going for around $128 and the PAN9420 module is costing at about $20.76 on digikey.

Portwell eNuC SBC is powered by Apollo Lake SoCs with Display Ports

The Intel Apollo Lake SoCs officially known as the Intel Atom® processor E3900 series, Intel® Celeron® processor N3350, and Intel® Pentium® processor N4200 platform empowers real-time computing in digital surveillance, new in-vehicle experiences, advancements in industrial and office automation, new solutions for retail and medical, and more. Intel which has also pioneered the Embedded NUC (eNUC) through its Intel NUC system is paving the way for the development of Next Generation Single Board Computers (SBCs).

PortWell, the makers, and innovator of several industrial embedded computing solutions who just released the recent Pico ITX Apollo Lake SoC board have just released the Portwell “WUX-3455” board, a small form factor embedded system board featuring the Intel Celeron Processor J3455, known as Apollo Lakes and also part of their WUX-3350 mini PC board series.

Portwell’s WUX-3455 is a 4×4-inch (101.6mm x 101.6mm) Embedded NUC form factor board, based on the Intel Celeron J3455 Processor plus DDR3l SO-DIMM supporting up to 8GB 1866/1600 MT/s, up to 6x USB ports 3.0 and 2.0, up to 64GB eMMC 5.0 flash storage, onboard microSD 3.0 Socket, one COM port using the RJ45 connector for RS-232, one DisplayPort (DP) and one HDMI with resolution supporting 4K videos.

With a display port and one HDMI port offering a resolution of about 4096 x 2160 and an onboard Realtek ALC255 driven audio I/O, the Portwell WUX-3455 board isn’t shy away from producing 4K videos with surrounding audio, and enough multiple storage interfaces to hold content. The board is equipped further with Gigabit Ethernet, RS-232 ports and enough USB Ports, data communication is made easy. It provides an M.2 slot support, for various wireless options, and a TPM chip is optional.

The Portwell WUX-3455 delivers robust performance, yet it operates with thermal design power (TDP) under 6W/10W for fanless applications. Going with the quad-core Celeron J3455 gives 10W TDP at about 1.5GHz to 2.3GHz, the quad-core Pentium N4200 generates 6W TDP at about 1.1GHz to 2.5GHz, and the dual-core Celeron N35550 generates 6W TDP at about 1.1GHz to 2.5GHz. It also supports a wide voltage of power input from 12V to 19V and a 0 to a 60oC temperature range for rugged applications.

The following below are some of the specifications for the WUX-3455 SBC:

  • Processor –
    • Intel® Pentium® N4200, 4 cores, 1.1GHz/2.5GHz, 6W TDP
    • Intel® Celeron® N3350, 2 cores, 1.1GHz/2.4GHz, 6W TDP
    • Intel® Celeron® J3455, 4 cores, 1.5GHz/2.3GHz, 10W TDP
  • Memory –  up to 8GB DDR3L-1866/1600/1333MHz via 2x SODIMMs
  • Storage Options –
    • 1x SATA III
    • 1x MicroSD 3.0
    • Up to 64GB onboard eMMC 5.0
  • Display & Audio:
    • HDMI 1.4a port at up to 3840 x 2160
    • DisplayPort at up to 4096 x 2160
    • Intel HD Audio and Realtek ALC255 HDA codec
    • Audio jack with line-out or mic-in
  • Networking — 1x GbE port (Realtek RTL8111H)
  • Others:
    • 4x USB 3.0 ports on the rear I/O
    • 2x USB 2.0 ports onboard with pitch 2.0 header
    • RS232 port
  • Expansion — M.2 E+A key for WiFi, Bluetooth, 3G, 4G
  • Other features — Watchdog; hardware monitoring; optional TPM 2.0
  • Power — 12-19VDC input jack
  • Operating temperature — 0 to 60°C
  • Dimensions — 101.6 x 101.6mm (4×4-inch eNUC form factor)

The PortWell WUX-3455 board can find applications the areas of digital signage in public spaces (stadiums, museums, transportation systems, corporate buildings, healthcare facilities, retail stores, hotels, restaurants, and more), manufacturing, industrial automation, office automation, video analytics, security surveillance, to end-to-end solutions for the ever-evolving and ever-expanding IoT use cases.

The WUX-3455 is available through Portwell, Arrow Electronics, and Avnet. More information about the WUX-3455 may be found in the WUX-3455 announcement.

Arduino E-Paper Display Review ( Waveshare 1.54″)

Our friends at educ8s.tv uploaded a new video. It’s about Waveshare 1.54″ e-paper display:

Dear friends welcome to this Arduino E-Paper display tutorial. In this video, we are going use this small e-paper display with Arduino for the first time and talk about its advantages and disadvantages.

Arduino E-Paper Display Review ( Waveshare 1.54″) – [Link]

DIY Light (Lux) Meter using BH1750 sensor, Arduino and Nokia 5110

Hi guys, continuing on our recent path of building really cool stuffs based on the Nokia 5110 LCD display, today we will be building a DIY Lux (or light) meter using the highly sensitive BH1750 light sensor.

In photometry, illuminance is the total luminous flux incident on a surface, per unit area. It is a measure of how much the incident light illuminates the surface, wavelength-weighted by the luminosity function to correlate with human brightness perception. Similarly, luminous emittance is the luminous flux per unit area emitted from a surface. Luminous emittance is also known as luminous exitance.

Lux is a measurement of the overall intensity of light within an environment for any given area or distance from the source or lux is the amount of light in an environment perceived by the human eye. The Lux meter is thus, a device used to measure the light intensity within an environment and its exactly what we will be building during this tutorial.

DIY Light (Lux) Meter using BH1750 sensor, Arduino and Nokia 5110 – [Link]

Arduino Mega Chess on TFT display

Chess processor with GUI dedicated for Arduino Mega. by Sergey Urusov

After some my Arduino project remains unclaimed touchscreen, so I decided to realize my chidhood dream to create a chess program. After a couple of months it wins me, but it is not big deal because i do not have any chess rating, just amateur.

This project uses Arduino Mega 2560 because of lack of operative memory on Uno, 2.8 inch touchscreen, passive buzzer, and about 2000 lines of code.

Arduino Mega Chess on TFT diplay – [Link]

Raspberry Pi Clock with Temperature

A Raspberry Pi clock with outside temperature display using OpenWeatherMap and inside temperature display using a MCP9808 sensor. By Jeremiah Mattison

This project is for a building a digital clock that includes temperature display. It uses OpenWeatherMap to retrieve outside temperature information and a MCP9808 sensor for inside temperature.

Raspberry Pi Clock with Temperature – [Link]

World´s Smallest Wearable Made to Help Prevent Skin Cancer

Wearables are devices that incorporate and interact with different parts of our bodies and perform a specific task. The tasks can be to improve our health (count steps, heart rate etc.) or to make our life easier (GPS, smartwatches etc.). Technology industry has dominated the wearable market since its easier for a technology company to produce technologic devices, but other companies have joined the trend and now companies in the textile, fashion and medical industry started producing their own wearables with specific purposes. L’Oréal the world leader on makeup, cosmetics skin care etc. has now joined the race.

In a research project with Northwestern university, the world´s smallest wearable was created. Measuring less than an M&M in circumference and weighting less than a raindrop this device was designed to measure UV exposure of the user to reduce skin cancer by modulating their exposure to the sun. UV Sense has no battery, no moving parts, its waterproof, and it can be attached to any part of the body preferably a location with good sun exposure.

The device connects to an app that shows you the exposure you have had in a day or over a period. Also, the app can be configured to send notifications when users exceed daily safe sun limit.

According to the skin cancer foundation “Each year in the U.S over 5.4 million cases of nonmelanoma skin cancer are treated in more than 3 million people, and each year there are more new cases of skin cancer”, but with this device skin cancer could be prevented instead of treated. The researchers at Northwestern have received roughly 2 million grant from the National institutes of Health to deploy fingernail UV sensors.

The device is undetectable which will encourage people to use it, and as it requires no batteries, users do not need to worry about charging the device or forgetting to do so. This means that people can now be warned about sun exposure and will be able to take measures to prevent diseases with no effort at all. The same research team is also working on other devices that could help check other health aspects to increase awareness about different diseases and the daily activities that may cause them.

[Source]

PowerSpot Far Field Wireless Charger Will Charge Devices Up to 80 Feet Away

Over the last few years, there has been an unprecedented growth in the consumer electronics industry. The smartphones, fitness trackers, Smart homes devices, wearables, earbuds, VR/AR, and much more have fostered this growth.

The Smartphone proliferation has been a key factor in the global consumer electronics market size, smartphones have become way better, faster and even cheaper. The Internet of Things (IoT) has promised us more incoming and it’s estimated that we will have up to 21 billion connected devices by 2020. Technological advancements like the emergence of 4G and 5G technologies are expected to drive this demand. Despite all these advances in technology, one function remains chained to the wall – Power.

The laptops, tablet, phones, smart hubs, fitness trackers and others still require being powered. Even, though they are mostly battery powered and could last for a couple of days (without much activity), they all still need to be tied to a plug socket for hours to be recharged. Power has been a major source of concern and people have been dreaming about the potential of wireless charging their devices.

Powercast PowerSpot Transmitter

Wireless charging has been an interesting topic in the past few years with major advancement made in wireless charging smartphones up to a few centimeters using charging platforms. Like Energeous Wattup that charges up to 3 feet away, Powercast has introduced PowerSpot – a system that will allow devices to be wirelessly charged at up to 80 feet away.

Powercast a leading provider of RF-based wireless power technologies, has unveiled the PowerSpot. Similar to Wi-Fi, devices charges in the range of the PowerSport 3W transmitter, and will automatically turn off when full. PowerSpot charging technology needs no charging platform or direct line of sight as we have seen in Qi charging platforms and has already received approval from both the U.S.-based FCC and Canada-based ISED.

Powercast’s transmitter uses the 915 MHz ISM band to send power to a Powercast receiver chip called “The PowerHarvester” in a device, which converts the transmission to DC to “directly power or recharge” an enabled device at up to 80 feet for devices with low power need. The PowerSpot transmitter uses Direct Sequence Spread Spectrum (DSSS) modulation for power and Amplitude Shift Keying (ASK) modulation for data and includes an integrated 6dBi directional antenna with a 70-degree beam pattern.

PowerSpot charging zone

Game controllers, smartwatches, fitness bands, or headphones will charge best up to two feet away; with keyboards and mice up to six feet away. TV remotes and smart cards charge well up to 10 feet away; with low-power devices like home automation sensors getting sufficient charging power up to 80 feet away.

Powercast is expecting a $100 retail on the transmitter with a projected $50 average price when it reaches mass production. It will be available in the 3rd quarter of 2018 or early 2019.

World’s Smallest MEMS Micro-Loudspeaker Saves 80 Percent More Energy

STMicroelectronics along with the audio company USound has created the first MEMS (Micro ElectroMechnical Systems) micro-loudspeaker based on semiconductors. It’s the smallest loudspeaker in the world, but it can produce a powerful noise. MEMS makes it possible. The speakers are being presented at CES 2018 in Las Vegas.

MEMS loudspeaker with extremely small dimensions along with low power consumption and good sound quality.
MEMS loudspeaker with extremely small dimensions along with low power consumption and good sound quality.

In the audio world, the electromechanical capabilities of MEMS have only been used to build tiny microphones. Speakers, on the other hand, still rely on traditional dynamic design principles. It has taken almost 150 years for semiconductor technology to replace Werner von Siemens’ superior loudspeaker principle in 1877 with something newer. The Coil-magnet combinations are still being used in smartphones, wearables, and headphones to produce sound.

We can understand the working principle of MEMS speaker very briefly here. At first, thin piezoelectric layers are applied to a semiconductor(Silicon). An electric signal is sent to the piezoelectric layer allowing the diaphragm connected to it vibrate. Eventually, the mechanical principle resembles that of a normal Coil-magnet loudspeaker. The sound is created by the vibration in the diaphragm. However, the magnet and coil are replaced by a piezo element. By applying this new technique, USound’s MEMS version appears to offer significant advantages when it comes to distortion and THD or Total Harmonic Distortion.

The MEMS loudspeaker developed by USound has dimensions of just 5 x 7 x 2 mm and has a frequency range of 2 to 15 kHz. It takes up half the space of its predecessors and needs only 20 percent of the energy that they do. The above figures are convincing enough for the speaker to be a perfect fit for mobile applications such as wearables and smartphones.

According to the manufacturer, these tiny speakers are the thinnest in the world. It has less than half the weight of a conventional Coil-magnet speaker. Most suitable applications include in many portable devices such as headphones, over-the-ear earphones, and more. With the help of this new speakers, augmented reality headsets or virtual reality systems can be more compact and comfortable. Innovative features also enable 3D sound production with striking accuracy. Its high efficiency reduces energy consumption and can easily be operated with much smaller and lightweight batteries. Higher efficiency results in less heat generated making systems operate cooler than ever before.