Raspberry Pi category

Raspberry Pi Model Comparison Table

There are quite a few Raspberry Pi boards on the market today and sometimes it’s not that clear on the differences between them. I’ve made this table for a more visual representation of what’s on-board. Hopefully it will help you to choose the right board for you! [via]

You will need to login to access the PDF file.

Raspberry Pi Model Comparison Table – [Link]

Make Smart WiFi Router Using Raspberry Pi 3

Here’s how to make a smart WiFi router using the Raspberry Pi 3. by Mehedi Shakeel:

In this video, I will show you how to make a smart WiFi router using the Raspberry Pi 3. This tutorial provides a step by step guide on how to set up the Raspberry Pi as a hotspot and make it function as a smart WiFi router. Now you’ll be able to use your Raspberry Pi 3 like any router for WiFi connection.

Make Smart WiFi Router Using Raspberry Pi 3 – [Link]

LiFeP04wered/Pi+, A High-Performance Battery Power System For Raspberry Pi

LiFePo4wered/Pi+ is simply a better version of the LiFePo4wered/Pi3 and the LiFePowered/Pi. These devices are all designed to solve the issue of power supply to the raspberry pi. LiFePo4wered is simply a high-performance battery power system which is acting as an option for raspberry pi projects where the likes cellphone adapters and USB power banks cannot fit in.

Power is one of the significant factors in the use of the Raspberry, most Raspberry Pi projects are usually plugged into a wall power adapter which at some could impact on the mobility and portability of the project, but with the LiFePo4wered/Pi+ you don’t have to worry about plugging your project into a wall socket. It can power a Raspberry Pi for up to nine hours from its battery (depending on installed battery size, Raspberry Pi model, attached peripherals, and system load) and can be left plugged in continuously.

LiFePo4wered/Pi+ might probably end up as the best source of power supply to the raspberry pi, and the primary advantage is that it works with all models of the Raspberry Pi. The LiFePo4wered/Pi+ can provide a steady continuous current supply of 2A to the Raspberry Project; this is usually like the max most Raspberry Pi project will use an unlikelihood one will be capped at that max but the general standard of about 700mA.

The following are some of the features of the LiFePo4wered/Pi+:

  • 1500 mAh 3.2 V LiFePO4 battery: Uses a Lithium iron phosphate that provides safety, high power density and extended cycle life of 2000+ cycles. The battery can also be used as a UPS.
  • Optional 600 mAh, 3.2 V LiFePO4 cell: This is merely a smaller battery for low power applications or when there is power loss in the main battery.
  • 2 A continuous load current: Can supply this with 1500mAH battery option or using an external source of power.
  • A Smart charge controller:
    • Over-charge protection: This feature allows the device to stay plugged in continuously without exploding because it stores the extra charge to help it serve as a UPS when needed.
    • Auto-adjusting charge current: Regular charge current can be up to 1.5 A when used with high power chargers. However, it will automatically reduce current when needed not to overwork low power sources when they are used.
    • Customizable MPP (Maximum Power Point) voltage: This helps to obtain maximum efficiency when powered directly from suitably sized solar panels.
  • Others:
    • On/off button: provides convenient boot/shutdown triggers even in headless setups, with the press and hold function to prevent accidental activation (external button can be added).
    • Green PWR LED: This indicates the Raspberry Pi power state, and it provides feedback to the user. External LED can be included.
    • Red CHRG LED: This tells the user when there is a power loss and when there is a need to charge the batteries.
    • Wake timer: This allows the Raspberry Pi to be off until when it’s needed for low duty cycle applications.
    • Real-time clock: It keeps track of time and makes sure the raspberry pi comes on at a programmed time.
    • Autoboot: Makes the Raspberry Pi run whenever there is sufficient battery power, or when an external power supply is available.
    • Auto shutdown: Automatically shuts the Raspberry Pi down when there is a power loss or after a programmed amount of time.
    • Application watchdog: can alert a user by flashing the PWR LED or trigger a shutdown/reboot if the user application fails to service the timer within a configurable amount of time.
  • Compatibility: Works with every known model of Raspberry Pi, this includes Raspberry Pi Model A+, Model B+, Raspberry Pi 2, Raspberry Pi 3, Raspberry Pi 3 Model B+, Raspberry Pi Zero and Raspberry Pi Zero W.
  • Hackers Friendly: It has convenient connection points for input power, 5 V output power, switched battery power, external button and LEDs(Light Emitting Diodes), and MPP customization.
  • Software:
    • LiFePO4wered daemon: This is responsible for the auto shutdown and real-time clock (RTC) duties.
    • Command line tool: allows simple configuration and access to all features.
    • Shared library, language bindings: C/C++, Python, and Node.js bindings allow integration into user programs.

The LiFePo4wered/Pi+ is planned for a crowdfunding campaign on crowd supply, and more details of the project campaign are available on the campaign page.

Gen4 4DPi Display For the Raspberry

Gen 4D System LCD Touchscreen Display for the Raspberry

The gen4-4DPi range of LCD (Liquid Crystal Display) touchscreen modules was recently released by 4D Systems. The modules support the Raspberry family of single board computers (SBCs), which means that the modules work with all versions of the raspberry that supports the 40-pin header which includes Pi A+, B+, Pi2, Pi3, Pi3B, Pi Zero and Pi Zero W. The display will serve as the primary output of the Raspberry Pi, and they come in three different screen sizes which are 4.3-inch, 5.0-inch and a 7.0-inch.

Projecting from the Raspberry Pi has mostly been with the use of the HDMI connection to an external monitor or through the official Raspberry pi touch display which comes only in 7-inch display size and supports 800 x 600 display resolution. The 4D System is expected to provide different display size options to the user. The 4.3 sized screen has a 480×272 resolution while the 5.0 and 7.0 screen sizes have an 800×480 resolution.

The gen4-4DPi range connects to the Raspberry Pi’s 40 pin header using the gen4-4DPi Adaptor, which then connects to the gen4-4DPi display module using a 30-way FFC Cable. The adapter board conforms to the Raspberry Pi expansion header pin-out and Pi’s HAT device identification standard.

The communication between the gen4-4DPI display and the Raspberry Pi is through a high speed 48MHz SPI connection which is made possible by an onboard processor and also features a customized DMA enabled kernel, a combination that allows the display to output high frame rate as compared to other SPI display solutions.

The Gen4 display is designed for the Raspbian operating system and is capable of working with other applications like Pixel and Scratch. The module is built with a capacitive or resistive touch control options depending on the variant. There are 4*4.0mm mounting holes on the resistive touch modules and adhesive on the bezel for the capacitive touch modules. This simply means then a person can mount the gen4-4DPi by using the mounting holes for the resistive touch modules or through the adhesive provided on the Cover Lens Bezel (CLB) for the capacitive touch modules.

The following are some of the features of the Gen4 Displays

  • The range is RoHS and CE compliant.
  • The modules are a universal primary display for the raspberry pi.
  • There are resistive touch display modules which also have a capacitive touch version.
  • The resistive modules come with a TFT Screen with integrated 4-wire Resistive Touch Panel (T), while the capacitive versions have a Capacitive Touch Panel (CT) with Cover Lens Bezel (CLB).

The Gen4 Display comes in six different variants as shown below:

  • gen4-4DPi – 43T: This 4.3inch variant cost $49.95
  • gen4-4DPi -43CT – CLB: This 4.3inch variant cost $59.95
  • gen4-4DPi – 50T: This 5inch variant cost $65.95
  • gen4-4DPi – 50CT – CLB: This 5inch variant cost $69.95
  • gen4-4DPi – 70T: This 7inch variant cost $75.95
  • gen4-4DPi – 70CT – CLB: This 7inch variant cost $79.95

More information about the product is available on the product page. The product is also available for purchase on Digikey here with a slightly higher price.

Pixy 2 – Computer Vision at a Whole New Level

Computer vision started as a way for computers to understand their surroundings, this requires making a computer with a high-level understanding of digital images or videos. A device that performs computer vision needs to acquire, process, and analyze images to extract data from the real world and turn it into numerical information that can be used for something. The main application for this technology has always been artificial intelligence since giving a computer the ability to understand its surroundings (and learn from them) it’s a huge step towards decision making which is a fundamental part of AI.

Makers have also started using this type of technology which lead Charmed Labs to create Pixy in 2013. Pixy is a small, easily programmable device used to recognize certain things in its sight. Pixy can be taught objects, and it can also recognize color codes. This year, Pixy 2 was announced, and it can do everything Pixy could plus some additional features.

Pixy 2 has a custom pan tilt mechanism, making it easy to look around. Also, the image processing is now at 60 frames per second. It includes new algorithms for line detection, so it can track lines, and it’s now capable of identifying intersections, and reading signals to make decisions. Signals are simple barcodes which can be printed out and can be easily programmed to a certain instruction to be performed at the sight of that specific barcode.

The device includes a cable to plug it directly into the Arduino, or it can be connected to Raspberry PI via USB cable. It can also communicate via SPI, I2C and UART giving the makers a wide range of options to work with. Finally, the new version has a LED light meant to be used in dark spaces.

A lot of projects for Pixy can be found on the internet, and with the new additions that Pixy 2 offers, there would soon be a lot of applications for this device too. Pixy 2 is smaller, faster, and smarter. As a result, makers will find creative ways to exploit these characteristics in their projects. Finally, Pixy can also be used with Lego Mindstorms (NXT and EV3).

The first Pixy was launched on Kickstarter, but Pixy 2 is not crowdfunding, and its already available to be bought on Amazon or on its official website.

CrowPi Development Board For the Raspberry Pi

CrowPi- A Raspberry Pi Kit to Learn Computer Science, Programming, and Electronics

CrowPi Kit for learning programming

Ever since the first Raspberry Pi was released back in 2012, millions of them have been sold worldwide and have revolutionized the learning industry especially in STEM Education. The Raspberry Pi has not only been used in the classroom but deployed into commercial applications as well.It has seen countless applications, and several projects have been built around it. The Raspberry is a single board computer but can be used for more than your general computer stuff. Just like the popular open-source hardware Arduino, the Raspberry Pi can be used for hardware prototyping. For that reason, the team at Elecrow is launching a new raspberry kit called CrowPi that will help learners, makers, enthusiast learn and apply the Raspberry in an entirely new way.

CrowPi is the brainchild of Elecrow Engineers, a company devoted to the open source hardware industry with the hope of making something that can help instantly solve computer science, programming, and electronics challenges more easily.

CrowPi Development Board

CrowPi is a development kit for learning basic computer science, practice computer programming and complete numerous electronic projects. CrowPi is designed for people that don’t want to do just basic things with the Raspberry Pi but do more. It is intended for people that are interested in electronics, the ones passionate about STEM education, or the ones that one to explore the dark web of the electronics world.

Unlike most development kit out there, the CrowPi is equipped with a 7-segment display which will give you the ability to keep learning, hacking, be building, and experiment anywhere you are. The CrowPi is an all in one kit that embeds everything you will need for doing most Raspberry Pi projects. It is convenient to carry the CrowPi around because of the nice case and compact layout.

The CrowPi is specially designed to help users develop their python programming skills. The kit provides printed user manual and step by step digital tutorial as shown below:

CrowPi Manual Snippet

The kit is compatible with the Raspberry Pi 2/3 and Raspberry Pi Zero, and includes LED indicators to show status of GPIOs and even comes with add-on camera (only available in the Advanced Kit version).

CrowPi comes in 4 kit variations; The CrowPi Basic Kit which comes without a Raspberry Pi and is available for $149, The CrowPi Intermediate Kit with a RPI Zero and is available for $179, The CrowPi Intermediate Kit with RPI 3B+ and is available for $209, and lastly the CrowPi Advanced Kit with RPI 3B+ and is available for $249. These kits are currently available for pre-order on their kickstart campaign at discounted prices and shipping is expected by July 2018.

CM3-PANEL – A Panel PC based on the Raspberry Compute Module 3

Early last year, the Raspberry Pi Foundation launched the Raspberry Pi Compute Module 3, a board designed to provide firms with low-cost computer hardware to build into products. The Raspberry Pi Compute Module 3 (CM3) packs the same 1.2GHz, quad-core Broadcom BCM2837 processor and 1GB memory used on the Pi 3 onto a slimmer and smaller board. The CM3’s compact design, the same size as a DDR2 small outline dual in-line memory module, is suited to be built into electronic appliances. The Compute Module already sees some adoption in commercial applications and Acme Systems is an organization building on it with their latest release of the CM3-PANEL.

Raspberry Pi Compute Module 3 Device
Raspberry Pi Compute Module 3

The latest product to leverage Raspberry Pi CM3L SoM is made by Italy based company Acme Systems, and designed for Panel PCs and tablets. Acme Systems isn’t new to developing products based on the Raspberry Pi; they launched the Acme CM3-Home last year, a Raspberry Pi 3 Compatible Board designed for Home Automation.

CM3-Panel is a 7-inch thin touch-panel PC based on Raspberry Pi 3 industrial module deemed to be integrated on the front panel of your devices. The device comes with a socket for attaching the Raspberry Compute Module 3 and featuers a MIPI connector for the Raspberry Pi Camera. It extends out 24 GPIO lines from the Raspberry Pi where some are used for; Lcd backlight control (1 GPIO), Camera led and camera shutdown control (2 GPIO), SPI bus (5 GPIO), Hardware PWM lines (2 GPIO), Serial line (2 GPIO), PCM line (4 GPIO), and I2C bus (2 GPIO). The CM3-Panel can operate in temperature range of -20°C to +70° C and is less than 22mm thick.
The device comes in four different models, including two with modules that support Acme’s open source 868MHz Yarm RF radio module spec:
  • CM3-Panel-U — USB 2.0 port — 95 Euros ($113)
    • No WiFi module
    • USB Host port
    • No Yarm radio module
  • CM3-Panel-W — 2.4GHz WiFi — 99 Euros ($118)
    • WiFi @ 2.4GHz
    • No USB Port
    • No Yarm radio module
  • CM3-Panel-UY — USB and 868MHz Yarm ISM — 115 Euros ($137)
  • CM3-Panel-WY — 2.4GHz WiFi and 868MHz Yarm ISM– 119 Euros ($142)

Yarm is a smart and cost-effective solution for system integrators to build their own RF applications at 868 MHz avoiding all the hardware design costs requested to start a new custom RF project. Yarm integrates a low power MCU (35 µA/MHz in active mode and 200nA in sleep mode) and a high sensitivity transceiver.

The 868MHz Yarm module is compatible with Acme’s ISM 868MHz Energy Harvesting radio nodes. The module is equipped with a Cortex-M0+ based, 22 x 14mm Microchip ATA8510 ISM transceiver. The CM3-Panel has a separate array of Yarm GPIO in addition to the main Raspberry Pi GPIO. The optional RaLink RT5370N 2.4GHz WiFi module is based on USB 2.0 and is fully supported by the latest Kernel Linux versions.

CM3-Panel appears to be an open source product because ACME systems have published it’s schematic, mechanical drawing, and a 3D stem model for 3D printing. The product is available for purchase and can be bought online from the product page.

The third revision of the Raspberry Pi can best be summed up by the old adage of more of the same.

A Raspberry Pi SBC

The third revision of the Raspberry Pi can best be summed up by the old adage of more of the same. A faster processor and Power over Ethernet capability were advertised – OEMsecrets tells you what you need to know.

Raspberry Pi’s are always sold via the ecosystem. This is a promise which the foundation, by and large, manages to keep: if you use a sufficiently recent version of RaspBian so that the new SOC is supported, the same memory card can also be used in older versions of the process computer. When looking at the thing from the top, not many differences can be seen. The most important change is the addition of the four pin header for the Power over Ethernet hat: it might cause problems with some cases. Other than that, the physical dimensions remain the same.

The third revision of the Raspberry Pi can best be summed up by the old adage of more of the same – [Link]

Google Launches New DIY Artificial Intelligent Kit Powered by The Raspberry Pi Zero WH

The Google AIY (Artifical Intelligent Yourself) Project Team is no new and has been in existence for a while now. Their job is to deal with two significant parts of the AI community namely; voice and image recognition. Although they launched the first generation of AIY Vision and Voice kits that comes equipped with a Raspberry Pi last year, they have now modified the kits and this lead to the creation of a new generation of AIY Vision and Voice kits. Unlike the previous kits which made use of Raspberry Pi 3, the new kits which are smarter and cost-effective are based on the smaller Raspberry Pi Zero WH.


Due to the “continued demand” for the Voice and Vision kits mostly from parents and teachers in the STEM environment, Google decided to “help educators integrate AIY into STEM lesson plans and challenges of the future by launching a new version of our AIY Kits.” The new vision kit has a Raspberry Pi Camera Module V2 which can be easily assembled to create a do-it-yourself intelligent camera which cannot only capture images but also recognize faces and objects.

The Vision Kit comes with USB cable and a pre-provisioned micro SD card. Raspberry Pi Zero WH which the new kit was based on, has the same features as the Raspberry Pi Zero W. However, the Pi Zero WH comes with a soldered 40 – pin GPIO. It is also more flexible and less expensive than Raspberry Pi 3. The Vision kit is less costly as compared to the previous version because Pi Zero WH was used and can be bought for just $90. Other parts of the Vision Kit include; the cardboard case, a speaker, wide lens kit, standoffs and many more.



The Voice Kit has most of the features found in Vision Kit but there are few differences such as the absence of a camera module and the presence of a Voice Bonnet Hat and Voice Hat stereo Microphone boards. If you argued that cardboard cannot talk, then you were wrong as the AIY Voice Kit has accomplished that already. The kit comes enclosed in cardboard and costs $50. It also has a speaker, wires, and even an arcade button.

The Voice Kit is linked with Google Cloud Speech API & Google Assistant SDK , can answer questions and perform certain tasks that has been programmed to do.

The new AIY Kits are available for purchase at US retailer Target:

The kit is expected to be available in the UK this summer.

The Google team is introducing a new way to interact with the Kits alongside the traditional use of “monitor, keyboard, and mouse” using a companion app for Android devices. The app aims to make wireless setup and configuration a snap. The app will be available alongside the launch of the new kits from the Google Play store. Google is also working on iOS and Chrome companion apps, which should be coming along soon.

More information about this development can be found on the Google AIY website

“ApplePi DAC” audio HAT

ApplePi DAC Audio HAT Add-on For The Raspberry Pi Features 24-bit DAC And A 128dB SNR

Orchard Audio quickly exceeded its $5K Kickstarter goal for its ApplePi DAC HAT board, which it is promoted as “the most advanced and highest performance sound card hat for the Raspberry Pi.” You can order the add-on board from May 13 starting at $175. Options include a $5 stacking header and a $25 5.25V, 3A power supply. The ApplePi DAC supports the Asus Tinker Board and Allo.com’s Sparky in addition to the Raspberry Pi.

“ApplePi DAC” audio HAT
“ApplePi DAC” audio HAT

A fully assembled $374 system provides the new HAT board, header, and power supply plus a Raspberry Pi 3 SBC, an acrylic stand, and an SD card with a choice of preconfigured Volumio, Rune Audio, or Raspbian. For $574, you get the assembled system plus a 7-inch touchscreen. All the products ship in July.

The board is powered by dual TI Burr-Brown DACs (PCM1794A) configured in monaural mode. The system has a dynamic range of >135dB and a signal-to-noise ratio (SNR) of 128dB, which can bump up to 132dB. Total Harmonic Distortion + Noise (THD+N) is listed as an impressively low <0.0005% (-106dB). The board supports both 16- and 24-bit bit rates, as well as sample rates of 44.1, 48, 88.2, 96, 176.4, and 192kHz.

Orchard highlights the board’s ultra-low noise linear regulation and low jitter PLL clock generation. The mentioned derives are not from the usual crystal, but rather from a CS2300 IC from Cirrus Logic. This clock chip integrates a crystal, PLL, and clock multiplier into a single device, the input jitter is attenuated by 60dB (1/1000). It is remarkable that the onboard balanced (Mini XLR) and unbalanced (RCA) outputs are driven by dual differential output circuit stages. Orchard says that most competing boards offer only single-ended outputs. So, this feature really makes it stand out.

The ApplePi DAC runs at 4.5W and can be powered by a Raspberry Pi, but the manufacturer recommends using the optional 5V adapter. In addition to Volumio and Rune Audio, the ApplePi DAC supports moOde Audio, piCorePlayer, and Roon Network Endpoint software.

The ApplePi DAC is available on Kickstarter through May 13 starting at $175, with shipments due in July. More information may be found at the ApplePi DAC Kickstarter page and Orchard Audio’s ApplePi DAC product page.