Raspberry Pi category

iSwitchPi Adds an Intelligent Power Switch to Your Raspberry Pi

by Peter Boxler :

Native Raspberry Pi does not have an On/Off switch and there is no easy way to shutdown the Pi while keeping the filesystem intact. This Intelligent Power Switch allows just that: Power-On the Pi by pressing a pushbutton and also properly Power-Off the Pi with another press on the same button. The intelligence is provided by a program running in an AVR MCU ATtiny44. This C-program implements a Finite State Machine in the MCU. A small Python script is running in the Pi itself. Just one GPIO-Pin is used for two-way communication. In addition, a variable frequency square wave is available for externally interrupting the Pi.

iSwitchPi Adds an Intelligent Power Switch to Your Raspberry Pi – [Link]

Explanation of the Components on a Raspberry Pi

In this video, Circuit Basics unbox a new Raspberry Pi B+ and show you the main components on the board. It’s a good primer to watch before you connect it to a monitor, keyboard, or router for the first time.

Explanation of the Components on a Raspberry Pi [Link]

How to Write and Run a C Program on the Raspberry Pi

In this tutorial, circuitbasics.com discuss what a C program is, what C programming is used for, and finally, how to write and run a C program on the Raspberry Pi.

The C programming language is one of the most widely used programming languages of all time. It is computationally faster and more powerful than Python. C is a middle level programming language because of its low level of abstraction to assembly language.

How to Write and Run a C Program on the Raspberry Pi – [Link]

Raspberry Pi Zero PiE-Ink Name Badge

Maker Josh King has introduced the PiE-Ink Name Badge.

Introducing the PiE-Ink Name Badge – a Raspberry Pi Zero Python Powered E-Ink Linux Name Badge (what a mouthful!). A full wearable linux computer system on your chest!

Raspberry Pi Zero PiE-Ink Name Badge – [Link]

How to Access the Raspberry Pi GUI with a Remote Desktop Connection

circuitbasics.com has a tutorial on how to access Raspberry Pi with a remote desktop connection.

In the previous post, we learned how to set up a WiFi dongle and access the Raspbian command prompt via an SSH client called PuTTY. PuTTY is a great application for accessing the command line in Raspbian from another computer, but you can’t use it to access the Raspbian desktop (GUI). In order to access the Raspbian GUI from another computer, we need to configure it to work with a remote desktop application. This will allow us to access our Raspberry Pi desktop (or the command line) from anywhere in the world as long as we have a computer with an internet connection.

How to Access the Raspberry Pi GUI with a Remote Desktop Connection – [Link]

How to Connect to a Raspberry Pi Directly with an Ethernet Cable

How to Connect to a Raspberry Pi Directly with an Ethernet Cable.

Ethernet is the fastest and most reliable way to connect to your Pi. You can set this up in just a few steps and never get disconnected from network time outs or low bandwidth on your network. You can access your Pi without even being on a network. If you travel with your Pi, all you need is a laptop and an ethernet cable to connect to your Pi!

How to Connect to a Raspberry Pi Directly with an Ethernet Cable [Link]

CM3, Raspberry Pi Compute Module 3

Raspberry Pi launched the new version of its compute module providing twice the RAM and roughly 10x the CPU performance of the original Module. Compute Module 3 (CM3) fits into a standard DDR2 SODIMM socket and provides the same basic processing capabilities as the Raspberry Pi 3. It is designed for professional engineers who would like to develop embedded systems.

CM3 comes in two versions. The first is the “Standard CM3” that features a 64-bit Broadcom BCM2837 application processor, built around an ARM Cortex-A53 quad-core processor running at up to 1.2 GHz, with 1GByte RAM, the same as Pi3, and 4 Gbytes of on-module eMMC flash. The second version is “Compute Module 3 Lite (CM3L)” which still has the same BCM2837 and 1Gbyte of RAM, but brings the SD card interface to the Module pins so a user can wire this up to an eMMC or SD card of their choice.


Back side of CM3 (left) and CM3L (right)


“The idea of the Compute Module was to provide an easy and cost-effective route to producing customised products based on the Pi hardware and software platform. The thought was to provide the ‘team in a garage’ with easy access to the same technology as the big guys.”

Raspberry Pi also released an updated version of the Compute Module IO Board V3 (CMIO3). This board provides the necessary power to the module and gives you the ability to program the module’s flash memory or use an SD card for the lite version, to access the processor interfaces through pin headers and flexi connectors. In addition, it provides the necessary HDMI and USB connectors.

This board provides both a starting template for those who want to design with the Compute Module and a quick way to start experimenting with the hardware, and building and testing a system, before going to the expense of fabricating a custom board. The CMIO3 can accept an original Compute Module, CM3, or CM3L.

CM3 and CM3L are priced at $30 and $25 respectively, and this price applies to any order size. The original Compute Module is also reduced to $25. You can order your own from Raspberry Pi partners, element14 (or Farnell UK) and RS Components. The partners are also providing full development kits, which include all you need to get started designing with the Compute Module 3.

ASUS Tinker Board Competing Raspberry Pi

Raspberry Pi has been the household name for many years now, and many other companies have tried to replace it with their offering, but no one sussed to replace Raspberry Pi by performance and low-cost. Though, that might change as ASUS are entering the arena with their 90MB0QY1-M0EAY0 Tinker Board, which have better components across the board.

According to Hexus.net, ASUS believes the capabilities of the Tinker Board will make possible projects that were too much to ask of even for the newest Raspberry Pi revision. Discussing the reasoning behind the creation of the ‘ASUS Pi’, the Taiwanese computer firm said:

“Raspberry Pi has been in the market for so long, we’re here to expand users’ choices with more options. And this board has 4K support, higher SoC performance, faster Ethernet transmission, and flexibility for the memory size.”

The ASUS Tinker Board (90MB0QY1-M0EAY0) features Rockchip RK3288 quad-core SOC running at 1.8GHz with 2GB of RAM, which gives almost two times faster that Raspberry Pi 3’s Broadcom chip. The Tinker Board also comes with H.264 4K decode abilities and SDIO 3.0. Below you can see the specification diffraction between ASUS Tinker Board and Raspberry Pi 3.

The Raspberry Pi 3 is available at a price of around £34, with the ASUS Tinker board coming with a slightly higher price around £45-55 depending on the retailer.


A New Era of 3D Printing With Cel Robox’s Root, Mote and Tree!

C Enterprise Ltd., the company behind the amazing 3D printer Cel Robox, is now back on stage with some new upgrades and plug-ins: Root, Mote and Tree! Imagine that you will be able to control your 3D printer missions remotely where you can also control not only one printer, but multiple of them!

Robox is not another 3D printer, the 20-micron accuracy printer is a micro-manufacturing platform. The precise positioning of the 3 axis system along with the mechanical and electronic design of the HeadLock system provides a robust framework on which to build a range of manipulators and scanning devices to allow this robot in a box to do much more than just create beautiful 3D prints.

Key features of Robox is on this slideshow. You can check the full specifications here.


If you already have a Robox so don’t worry, you are not left behind. Robox team thinks that it won’t be a good choice to build above the already functional 3D printer in order to increase its capabilities. What they are doing right now is updating peripherals which are standalone and won’t disrupt the quality of the original printer. For example, an original Robox can be upgraded to become a RoboxDual using DIY upgrade kits or vendor provided services.

Increasing the size of printing by making a bigger size Robox was a suggestion for them, but what they were thinking about was different. Making a bigger Robox may risk some features already guaranteed in the original one, so why not make a way that you can function multiple Robox editions at the same time in an amazing architecture that saves space and time? Here comes Tree: a bespoke furniture system that utilises the compact nature of the Robox micro-manufacturing platform to increase productivity. It is  a precision CNC machined from high quality birch plywood with a choice of two different finishes, and is supplied as an easy-to-assemble ‘flat-pack’ solution. Using familiar fasteners, Tree can be assembled by anyone in under 30 minutes with just an allen key and screwdriver. It is a nice addition to your fablab, coworking space or even your office!

To control this Tree, a new plugin from Robox is also introduced: Root! Robox Root is a connectivity
extension platform for all Robox printers. Its core function is to add network capabilities to multiple Robox from a single Root, with secondary functions to include a web interface and printer sharing across a network. It is perfectly suited for use in offices, schools or other professions where multiple users need easy access to a single or multiple printers. The onboard HDMI port also allows you to connect Root to any external display or touchscreen, including its companion, Robox Mote.

Robox Mote is custom designed controller for Root. Using a 5” touch screen connected directly to Root, you can see the status of any connected machines and also control them directly. This allows you to control and execute prints without a connected PC from pre-sliced GCode on SDcard or USB flash drive. Using Mote is an option, you can use any smartphone, tablet, or a computer using AutoMaker – Robox outstanding software.

In order to launch this new phase of Robox with customers involved, the team had launched a crowdfunding campaign on Kickstarter. Although it still has 21 days to go but the campaign exceeded its 10,000 goal.

Check the campaign video to learn more from Robox team:

If you don’t have a Robox, it’s a good opportunity now to get one with a great deal. You can order Robox now for £999, as mentioned in the website, but how about a DualRobox with Root included for £1399? If you already have a Robox it’s time to add a Root to your collection for £149 including Mote and support. And finally, if you are a business or a fablab and want to add a great 3D printing corner to your space then it’s the suitable time to order one of the Tree packages provided in the campaign.

Lots more rewards, packages, specifications and detailed information are provided in the campaign page, so check it out!

ZeroPhone – a Raspberry Pi smartphone

Arsenijs build a Pi-powered open-source mobile phone (that you can assemble for 50$ in parts).

Currently, it costs about 50$ in parts, and all the parts are available on eBay. No BGA or other difficultly solderable ICs are used (with the obvious exception of Pi Zero). User interface is written using Python, and there’s a phone-tailored UI framework in the works (so far, it uses pyLCI for interfacing). However, even current state of it is further that other projects have come.

ZeroPhone – a Raspberry Pi smartphone – [Link]