Raspberry Pi category

How to Setup an LCD Touchscreen on the Raspberry Pi

circuitbasics.com has a tutorial on how to setup a LCD screen for Raspberry Pi.

In this tutorial, I’ll walk you through the process of installing an LCD touchscreen on the Raspberry Pi, step by step. Many LCD touchscreens for the Raspberry Pi include an image file that you can write to your SD card and get up and running pretty quickly.

How to Setup an LCD Touchscreen on the Raspberry Pi – [Link]

Control AC Voltages Safely And Easily with Sugar Device

Sugar Device is a tool designed to control AC Voltage and it promises to change the way you control AC applications forever.
Sugar team is targeting hobbyists, students, teachers and engineers to push their application to the next level, since it makes AC control easy, safe and compatible with a lot of development platforms. The mechanical case that comes with Sugar is offering protection to users while using AC voltages and preventing any electrical shock resulted by misuse.

You can control AC voltage using Sugar with two different ways: ON-OFF switch, and AC output voltage control. You can power Sugar using the AC C14 cable. This voltage provided is used to power the load connected and the internal circuits. The fuse holder is accessible, you can replace it easily whenever you need.

For the output, Sugar is providing a universal output socket to connect your load, and it is compatible with all AC power cable types. Sugar can work with 110V/220V and with 50Hz/60Hz. You can switch between the two options using a switch provided with two indicator LEDs.

Sugar Device also can be connected with 3.3V and 5V development boards like Arduino, Raspberry Pi, and Beaglebone using the RJ12 cable. Sugar had designed  a RJ Connector breakout to make it possible to connect your board and it will be available in all kits. Controlling the AC loads using your PWM pins and Sugar will be so simple.

This 150x120x47 mm size device supports WiFi and Bluetooth and is IoT ready. For example, ESP8266 can directly control Sugar Device since it has PWM output with Frequency of 1KHz.

Sugar Device comes in two editions: Sugar 300, a white device that control up to 300W, and Sugar 1000, a black one that can control up to 1000W. The second one is offered for hackers and professionals where the first is for newbies.

Sugar Device is now live on a crowdfunding campaign on Indiegogo and still has a month to go. You can pre-order your Sugar 300 with a Power cord C14, RJ12 Cable, Sugar RJ Breakout and two AC fuse for only $49! Check the campaign video for more information.

In this video you can watch Sugar Device in Action, check it out!

Sugar device is the tool you need to expand the scope of your projects and control AC loads safely. Your dream of making your home smart can come true now with the use of this device. This device had came to life due to a cooperation with Fablab dynamic in Taipei, Taiwan. Such a cooperation will make it uncomplicated for makers to produce their own devices. Mohannad Rawashdeh and his team had tested many applications and used different platforms to ensure that Sugar is safe, practical and easy for everyone to use.

“When I was looking  for FabLab in Taiwan, I found FabLab Dynamic. They offered me a free space inside the lab to work and offered me all help I need to find component resources, using machines and instruments and contact with designers I need for my project” – Mohannad Rawashdeh, founder of Sugar Device and an electronics engineer.

You can check the campaign page to know the offers and full specifications. More information are provided on Sugar Device website. Many tutorials are added to this page and source files will be added soon on Github.

Control a stepper motor using Raspberry Pi

Here is a nice tutorial @ raspberrypi.org on how to control a DC motor using Python.

In this guide, you’ll be controlling two motors from your Raspberry Pi using Python on the desktop. First, it’s best just to learn how to control the motor. Then, once you have it working, you could easily use your code to drive a Raspberry Pi-powered robot by detaching the monitor, mouse, and keyboard and building a robot around a chassis.

Control a stepper motor using Raspberry Pi – [Link]

Android Things, Google’s IoT Platform

Google had launched Android Things,  a new comprehensive IoT platform for building smart devices on top of Android APIs and Google’s own services. Android Things is now available as a developer preview.

Android Things was basically launched as an enhancement for Brillo, Android based OS used for embedded development in particular for low-power IoT devices, and it is based on its feedback and best practices. Google had announced Android Things as re-branding of Brillo to solve many issues like the security of IoT devices.

Platform Architecture

Both work in conjunction with Weave, an open, standardized communications protocol that supports various discovery, provisioning, and authentication functions. Weave enables device setup, phone-to-device-to-cloud communication, and user interaction from mobile devices and the web. The chief benefit is allowing a “standardized” way for consumers to set up devices. Belkin WeMo, LiFX, Honeywell, Wink, TP-Link and First Alert will adopt Weave to make their devices able to interact with some Google products like Google Assistant.

One of the great things about Brillo was the security issue with IoT applications solved by choosing to use secure boot and signed over-the-air updates and providing timely patches at the OS level. Partnered with hardware manufacturers to build new devices based on Intel Edison, NXP Pico and the Raspberry Pi 3, Google will build the needed infrastructure to run the OS updates and fix security issues respectively on these devices.

Android Things makes developing connected embedded devices easy by providing the same Android development tools, best-in-class Android framework, and Google APIs that make developers successful on mobile. For more details about Android Things you can check the documentation provided here, where you can find also the developer’s preview.

Raspberry Pi LCD Touchscreen Calibration

Circuit Basics @ youtube writes:

In this video, I go through the process of calibrating an LCD touchscreen on the Raspberry Pi. Calibrating the LCD touchscreen should be done after installing it to make it more responsive and accurate.

Raspberry Pi LCD Touchscreen Calibration [Link]

How to Connect to a Raspberry Pi with an Ethernet Cable

circuitbasics.com show us how to connect Rasperry Pi using Ethernet cable.

If you use your Raspberry Pi as a gaming console, media server, or stand-alone computer, WiFi is a great way to get internet access. But if you connect to your Pi with SSH or a remote desktop application a lot, WiFi is actually one of the slowest and least reliable ways to do it. A direct ethernet connection is much faster and a lot more stable.

How to Connect to a Raspberry Pi with an Ethernet Cable – [Link]

DIY Pixel Art Frame Using Raspberry Pi Zero

Have you ever wanted to get an interesting art frame? That can display and flip photos, scroll text, show the weather or display social media notifications?

Frederick Vandenbosch’s new tutorial is for building an art frame using 32×32 LED matrix and Raspberry Pi Zero.

newimage-132

Electronics used in this project

You can watch a detailed step-by-step tutorial for assembling the frame in this video:


You can use the Adafruit RGB Matrix HAT like the tutorial to control the matrix and to make wiring simpler. But it is not mandatory, you can also wire the LED matrix directly to Pi’s GPIO. A USB Wifi adapter or dongle plugs into one of your desktop or laptop’s USB ports, allowing you to connect to a wireless network in the home, office, or a public place. You can use this connection to access shared files, devices, and documents, or to connect to the Internet. To connect this dongle with your Pi Zero you need a OTG USB cable. Connecting this dongle with your projects will open up for you doors of innovation, and that what made this frame cool!

The wiring is as described in this picture.

img_2833-1

Frederick used Raspbian Jessie “lite edition” for his Zero since the application is time-critical. Because it has more improvements, he preferred using Henner Zeller’s rpi-rgb-led-matrix library instead of the regular Adafruit library – which lately seemed an old version of the same series. He wrote a code to display and scroll ppm images, you can check it out here.

You can also use Raspberry Pi 3 in order to build this project, no need to change anything in software, and no need for the Wifi dongle since you can use the onboard Wifi. Things can be displayed on the matrix are unlimited. Since you have it connected with internet, this project could be your next IoT hack!

More details about this project and other amazing tutorials can be found at Frederick website.

How to Setup a Raspberry Pi Without a Monitor or Keyboard

Circuit Basics writes:

In this video, I’ll walk you through the steps of setting up a Raspberry Pi from the first boot up without a keyboard or monitor. This process requires only a PC or Mac, an ethernet cable, and access to a network router.

How to Setup a Raspberry Pi Without a Monitor or Keyboard [Link]

A LEGO-Compatible Digital Weather Billboard

Internet of LEGO “IoL” is an interactive LEGO city built and designed by Cory Guynn, a cloud computing and IoT enthusiast. This project combines computer and electronics  engineering with our favorite childhood toy, LEGO!

Through the IoL blog, Cory shares a collection of circuit projects, coding examples, and tutorials which use Arduino, Raspberry Pi, NodeJS, Node-RED, and LEGO.

cover

A recently added project is a digital billboard that broadcasts the weather information from IoL local weather station. It uses a Raspberry Pi running Node-RED to collect weather data from the local station and display it on an OLED screen powered by an ESP8266.

The hardware materials needed for this project:

  1. Raspberry Pi
  2. WeMos D1 mini
  3. OLED 128×64 I2C screen
  4. 2x LEDs
  5. 2x 220 ohm resistors
  6. Breadboard and wires
  7. LEGO bricks!

And the required software:

WeMos D1 mini is a cheap mini wifi board based on ESP8266 and compatible with Arduino and NodeMCU. It has 11 digital I/O pins that support PWM, I2C, and interrupts, and has only one analog input with a microUSB connector. The WeMos D1 is available for only $4 and is supported by many shields.

WeMos D1 mini top and bottom faces
WeMos D1 mini top and bottom faces

The 128X64 OLED is about 1.3″ display, it is very readable due to its high contrast. This display is made of 128×64 individual white OLED pixels, each one is turned on or off by the controller chip. No backlight is required because the display makes its own light, which reduces the power required to run the OLED.

Adafruit Monochrome 1.3" 128x64 OLED graphic display
Adafruit Monochrome 1.3″ 128×64 OLED graphic display

OLED’s driver chip, SSD1306 can communicate in two ways: I2C or SPI. The OLED itself require a 3.3V power supply and 3.3V logic levels for communication.

The display uses I2C connection at this project, so you will need to solder the two jumpers (SJ1/2) on the back of the OLED, then use the ‘Data’ pin as ‘I2C SDA’ pin and ‘CLK’ pin as ‘I2C SCL’. The WeMos D1, OLED, LEDs, and resistors are connected as shown in the figure.

billboard-fritzing

To simplify configuring WeMos D1, a special firmware called “ESPEasy” has been used. It is a free and open-source web configurable software framework for IoT, which allows the device to be configured using the web browser instead of writing codes.

ESPEasy can be uploaded to the WeMos D1 using the Arduino IDE by installing the ESP8266 board support from Boards Manager, and then uploading the ESPEasy firmware as described in this tutorial.

ESPEasy Firmware on Arduino IDE
ESPEasy Firmware on Arduino IDE

MQTT is a lightweight machine-to-machine publish/subscription messaging protocol. It works like Twitter where each device will subscribe and/or publish to a topic, much like a #hashtag, and the payload will then contain the data being transmitted.

Mosquitto is a free open source broker that works perfectly on a Raspberry Pi. It is a MQTT server manages the MQTT message flow, and connects with all devices.

The last step is configuring the Raspberry Pi on the weather station for sending the information to the billboard. An easy way for that is using Node-Red, a visual tool for wiring together hardware devices, APIs and online services for IoT applications.

Node-Red is pre-installed on the Raspbian Jessie image. Run the software and download this flow. It will accept an MQTT message on the topic “/sensors/iolcity/weather/#” and transmit it to the WeMos on the topic “/billboard/cmd”. Function nodes will format the message using JavaScript.

Node-RED Billboard MQTT Flow
Node-RED Billboard MQTT Flow

You can use it with your own weather station or any other sources of data, just change the MQTT input nodes to match your topics. To build a weather station check this IoL project and this ChipKIT-based station. Alternatively, you could get weather data using the Weather Underground service with the Node-RED node.

Further information and detailed description are available at the original project page.

Connect Raspberry Pi Easily To IoT with Particle

particle-verticalParticle is an Internet of Things device platform that enables businesses to quickly and easily build, connect and manage their connected solutions. Particle launched on Kickstarter in 2013 with the vision of making the Internet of Things easy and accessible.

Particle was listed as one of Fast Company’s Most Innovative Companies of 2015 and has been featured in a number of Gartner reports on IoT solutions.

Particle announced that they have been working with the Raspberry Pi Foundation to provide free IoT cloud support for the 10,000,000 Raspberry Pi devices already out in the world.

particle-pi-image

All Raspberry Pi devices will be able to connect to the Particle Cloud, and to benefit from key IoT features such as secure messaging, over-the-air updates, simplified GPIO control, data visualization, cloud integrations, and batch script execution out of the box.

The Raspberry Pi + Particle integration will bring some unique features to the Raspberry Pi

Run simple Arduino code on your Pi

No more complicated tooling, setup, or scripting to perform simple tasks like trigger a pin, blink an LED, or read a sensor value. With Particle’s Raspberry Pi Agent, you can write simple Arduino and C/C++ code that compiles and runs as an executable on your Raspberry Pi. Take advantage of Particle’s hundreds of embedded libraries to make interacting with sensors and controlling your Pi’s GPIO a breeze.

local_build_ide-5

Remote Control of your Pi over the web
  • Over the Air Firmware Updates
  • Batch Script Execution
  • Remote Data Collection
  • Integrations with IFTTT, Google Cloud, and other popular web services through Webhooks.

Access to the Particle Cloud is free! Signing up for the beta is open now and if you are interested you should sign up soon since Particle will be providing access to the first 1,000 Particle accounts at the end of November (21 November) with remaining invitations sent in the following weeks.

Particle’s intention is to provide this integration as a free prototyping resource to all Raspberry Pi developers. Thus, you only start paying when you create a product with more than 25 devices. You can check pricing structure here.

Particle is a scalable, reliable and secure IoT cloud platform and there are already some companies that use Particle to connect and ship their products like IDEO and Keurig. It also has some hardware development kits that work amazingly with the platform.

For more details, you can check Particle documentation and Github. More about this integration is featured on Adafruit ASK AN ENGINEER series where Particle’s CTO Zachary Crockett answers questions and gives a live demo of Raspberry Pi on the Particle Cloud. Check it out!