Tag Archives: Raspberry Pi

Raspberry Pi Plus Cloudio – A Personal IoT Computer with Drag and Drop Programming

Everybody loves the Raspberry (at least the makers does) and has seen several applications from being blasted to space or powering a self-driving car. Raspberry Pi in its natural state is an ideal platform for IoT development mostly due to its connectivity interfaces like the Bluetooth, WiFi, and Ethernet but no significant development has been done in this space apart from some pretty hacks in the last years. GraspIO in partnership with Farnell Element14 distributor has released the GraspIO Cloudio, a Raspberry Pi add-on board with Drag and Drop programming interface for full suite IoT applications development.
GraspIO Cloudio
Cloudio offers the ability to do drag and drop programming instead of the conventional text-based python programming and is supported on iOS and Android devices. So with just an Android phone, iPhone or iPad, you can start programming and controlling your raspberry pi cloudio based applications. Cloudio incorporates Voice Assistant Capabilities, Internet of Things cloud service, sensor monitoring and dashboard, custom notifications, and even provides off the shelf support with the beautiful IFTTT (“If This Then That”) platform. With the integration of IFTTT, you can easily automate some actions like for examples – if an email is received then send sensor reading or feed the fish for a while, another interesting case is – if a weather forecast states there is a likelihood of rain then closes the cage. Cloudio also provides support for upload program to multi-board at once, a perfect option if you will be managing a large number of boards.
Cloudio and Raspberry Pi
At the heart of the Cloudio board is the Atmel 8-bit AVR Atmega32U4 controller and comes in a portable size that makes it compatible with Raspberry Pi 1/2/3/Zero and ZeroW. It comes with a 0.96″ OLED Screen, a display that can be used for displaying real-time sensor values, custom messages and even supports emojis. The board includes proximity, light and temperature sensors and an extra 3 ADX ports for interfacing with external sensors. The board consists of a proximity, light, and temperature sensors plus 3x ADC interfaces for connecting other sensors such as humidity and motion. With the Cloudio, you will never run out of 5V ports as it comes with three digital 5V output ports. Cloudio does not require any external power supply unit and gets its power from the underlying Raspberry Pi. Other features of the board are a mini 5V servo motor port, a buzzer, RGB LED and tactile switch.
According to Steve Carr, the Global Head of Marketing at Premier Farnell and Farnell element14, he says –
“The versatility of GraspIO Cloudio along with its ease of use will make it popular with makers and innovators in a wide range of application environments. Cloudio, when combined with a Raspberry Pi, is a Full Stack IoT platform meaning that you can programme IoT devices simply and quickly with drag and drop programming on a mobile app. The combination of built-in hardware facilities and access to innovative application software will make Cloudio a valuable addition to the range of tools available to developers of projects involving voice, motion, imaging and cloud interaction.”
Cloudio lets you build and create your own voice assistants using the inbuilt speech recognition feature to control it from your smartphone. It comes with an unlimited cloud service from GraspIO to connect, program, monitor, and manage Cloudio from your mobile device. It is preloaded with 50,000 free Cloud Calls and which a daily 100 non-cumulative calls will be credited to the user’s account for life. Cloudio drag and drop based approach to IoT development is undoubtedly going to help limit the barriers in commencing IoT development.

The GraspIO Cloudio Raspberry Pi add-on board is now available to purchase, priced at $40 and is exclusively manufactured and distributed by Premier Farnell UK Limited and other companies that are members of Premier Farnell Group. You can buy the Cloudio Raspberry Pi add-on board here.

NanoSound Player & Digital Audio Transport for Raspberry Pi

Continuing the success of NanoSound DAC, Nanomesher @ kickstarter.com introduces the Digital version – NanoSound Digital and ready-to-run Player.

NanoSound digital is all-in-one audio add-on for Raspberry Pi NanoSound Digital provides essential functionalities including high-quality S/PDIF audio output, Media Control Buttons, Display, Remote control and Pi Power Switch, all in one package which fits neatly on top of your Raspberry Pi. NanoSound Digital is the S/PDIF digital output version of NanoSound DAC. It is compatible with HiFiBerry Digi audio driver.

Specifications

  • Wifi & Wired Ethernet Network
  • Play everything – MP3, FLAC, WAV, AAC, ALAC, DSD and many more
  • Spotify, Airplay, DLNA, Youtube & Free Web Radio
  • Play from Internal Storage, NAS and USB Flash
  • Control via Volumio App or Infrared Remote Control
  • 1.3″ OLED display with multi-language support
  • AUX and 3.5mm output
  • Texas Instruments PCM5122 DAC. 192kHz Sampling Rate / 24bit Resolution Burr-Brown DAC for best sound quality
  • Texas Instruments TPS7A4700 Ultra Low Noise Voltage Regulator
  • Output Power: 24mW @20Ω, 22mw @32Ω
  • Signal-To-Noise Ratio (SNR): 100db @20mW
  • Total Harmonic Distortion + Noise (THD+N): 0.01% @25mW
  • Output Power: 5W @2Ω, 3W @4Ω Efficiency: 90% @8Ω , 85% @4Ω, 80% @2Ω
  • Signal-To-Noise Ratio (SNR): 90db
  • Total Harmonic Distortion + Noise (THD+N): 0.15% Best Suited for Speaker with Power Rating: 15W – 30W

Pulurobot – An Open Source Heavy Load Bearing Application Robot Powered by the Raspberry Pi

If you have seen the starship delivery robots by Starship Technologies, you will know how cool delivery robot can be. Pulurobotics have released a set of low-cost opensource robots that are capable of carrying heavy loads and can be reconfigured to do several tasks.

Pulurobots
Pulurobots

Application robots are robots that can be configured to do several tasks. The Finish based company Pulurobotics have launched the Pulu set of robots called Pulurobots. Just like the way we have the Starship robot and other delivery robot, Pulurobots are low cost (low cost as compared to other robots), load bearing (can carry a payload of over 100kg), and are autonomous robots. Pulurobot can be used as – a delivery boy, a recycle bin, a nightguard, telepresence, shopping carrier, and many more.

The Affordable autonomous open source mobile robot is set to be published at Fosdem 2018, at the ULB Solbosch Campus in Belgium on Sunday 4th February 2018. At the heart of pulurobots is the Raspberry Pi, it needs one Raspberry Pi for navigation and communication with RobotBoard but can feed up to five Raspberries if you need more power or multiple Operating Systems to your application. The robot does Simultaneous Localization and Mapping (SLAM), charges automatically and fulfills the definition of an autonomous mobile robot.

Pulurobot was built from the ground up and doesn’t use ROS (Robots Operating System), even though it is compatible with it. Pulurobot comes in three models:

  • Pulurobot S
  • Pulurobot M
  • Pulurobot L

The Pulurobot S is the smallest version of the robot family with a footprint of about 400 x 300mm, Pulurobot S is capable of carrying over 50Kg of load, tested with 58Kg. Based on the same software and controller board that powers the other robots, Pulurobot S is ideal for applications that require small spaces or offices and a perfect fit for homes.

pulurobots parts
pulurobots parts

Pulurobot M is a medium size agile robot and comes in size of 650mm x 470mm with height 230mm and 304mm from the ground. It is powered by 2 pcs of 300W 24V BLDC wheel hub motor, uses LIDAR for navigating and mapping, 4 x 3D TOF (Timer of Flight) cameras and sonar sensors for obstacles. Pulurobot M is capable of carrying over 90 Kg of load, tested with about 118Kg and found no mechanical problems. It is meant to be an application platform. If you need more batteries for your application, you can stack it onto the robot. Inside the robot is a space for 240Wh 18650 battery array, but can easily accommodate around 1KWh on the chassis.

Pulurobots Sonar Sensors and Controller Board
Pulurobots Sonar Sensors and Controller Board

The following are some specification of the Pulurobot M:

  • Controller board
    • MCU – STM32 microcontroller for sensor management & low-level navigation
    • SBC – Slot for Raspberry Pi 2 or 3 for running mapping (SLAM)
    • Connectivity – WiFi and/or 3G/4G
    • Sensor –  MEMS gyroscope, accelerometer, compass
    • Motor controllers –   4pcs BLDC motor controllers, 700W peak, to support four-wheel drive computation
    • Power Supply – 5V/10A
    • Charger – 100W Lithium-ion charger
  • Vision
    • 2D 360 degree LIDAR
    •  Low-cost off-the-shelf 3D Time-of-Flight camera (SoftKinetic DepthSense) for mapping close obstacles
  • Chassis
    • Riveted, laser-cut aluminum chassis
    • Robust suspension: always four wheels on the ground
    • Two-wheel drive, BLDC hub motors (similar to hoverboards)
    • Supports at 90kg when moving, mechanical structure can withstand a lot more 
  • Battery – 18650-based lithium ion battery
  • Charging –  Can find and mount to its charger automatically

Pulurobot L is the largest of all the Pulurobot series and is expected to carry around 300Kg load. Pulurbot is currently not yet available, still on the drawing board. Pulurobot L will find applications in industries.

While most of the robots are still under development and labeled to be open source, they haven’t yet released their SW-HW design to the public domain yet. It is quite possible that their design could be available after the publication on 4th of February.  The Pulu S is available and will be available for pre-order for 999.00 EUR only during the Fosdem event, the Pulu M is available for purchase at about 3000 EUR, with delivery taking about 2 months.

Pulurobots could be a game changer in the robotics industries and could help foster more innovation, with the hope of bringing down the cost of building small but yet powerful robots in the future.

PMOD HAT Adapter Expansion for the Raspberry Pi

In the ever-increasing uses cases for the Raspberry Pi, one major way to add an extra functionality to the Raspberry Pi is making use of Pmod Modules. Pmod devices or modules are trademarks of Digilent Inc. They are set of small input and output interface boards that can be used to extend the capabilities of a development board.

PMod HAT Adapter

The teams from DesignSpark and RS Components has released a $15 expansion board called the Pmod HAT, that allows the functionality of Pmod modules be added to the Raspberry Pi in an easy plug and play manner. The DesignSpark Pmod (Peripheral Modules) HAT allows one to interface the Raspberry Pi with any one of the multitudes of diverse Digilent Pmods that are available from RS Components like the PmodAD1 (a two channel 12-bit ADC module), PmodISNS20 (a high accuracy Hall Effect current sensor), PmodOLEDrgb (an organic RGB LED module with 96×64 pixel display), and many others.

PMod modules

The Pmod HAT Adapter is a 65 x 56.5mm HAT compliant board that offers three 2 x 6 pin Pmod connections with support for I2C, SPI, UART and GPIO interfaces. The board can get its power either through the Raspberry Pi Power IO lines or via a 5V barrel power jack. The Pi HAT Adapter is compatible with the following Raspberry Pi: Raspberry Pi Model A+, Raspberry Pi Model B+, Raspberry Pi 2 B, Raspberry Pi 3 B, Raspberry Pi Zero W, and Raspberry Pi Zero.

The Pmod HAT Adapter is currently able to support up to six Pmod modules, three Pmod modules can be connected through the 3 extend Pmod interface and the rest through the additional I/O available via the Raspberry Pi 40-pin GPIO connector. It includes an EEPROM that stores a device tree fragment which is used to identify the module and configure the OS and drivers.

The board has been released with support for Python-based developers through a ton of demo tutorials and example Python Libraries hosted on DesignSpark.

Pmod HAT in use with Pmod devices

The following are the specifications of the Pi Pmod Adapter HAT

  • 5mm Follows Raspberry Pi HAT Specification
  • Provides access to full-line of Digilent Pmod Peripheral modules
  • Three Pmod ports: two SPI (JA/JB), one I2C (JB), one UART (JC), all three GPIO capable
  • SPU, UART, I2C, GPIO Connections are supported
  • 5V barrel jack for external power
  • 40-pin Raspberry Pi GPIO header
  • One power supply connector, or powered by the Pi via GPIO 5v pins
  • 16mA current limit for all PMOD GPIOs

The DesignSpark Raspberry Pi Pmod HAT Adapter is available for purchase at Digilent for $14.99 and 14 Pounds at RS-Components.

Talking Pi is a Voice Control Module for The Raspberry Pi

Voice is the most simple and powerful medium. Everyone has it and it is the most personal way to convey our thoughts, messages, instruction, ideas, and questions. We have seen the rise of Voice Assistants like Alexa and Google Home; where someone can control things with only voice commands.

Talking Pi Module from JOY-iT

Mid 2017, Google released the Voice Kit – a voice recognition kit for the raspberry that makes it possible to add voice to any Raspberry Pi based projects. JOY-iT has released the Talking Pi, an intelligent, universal open source voice control assistant for the Raspberry Pi.

Talking Pi made by JOY-iT is a voice control module designed for the Raspberry Pi that will allow one to use voice commands to control home lighting devices, talk to machines, activate power outlets and so much more. Talking Pi gives you the possibility to add voice assistant to your raspberry pi.

Apart from taking Voice Commands, Talking Pi is equipped with some extra add-ons that could enhance the functionality of a Raspberry Pi at no extra cost. It is equipped with a bracket holding 433-MHz radio modules and an integrated motor control. With the radio module addition, you could possibly use your voice to remotely control objects – like switch on/off the bedroom lights, pilot your drone with only voice, pilot your RC car with voice commands and many more. The Talking Pi provides support for both the 433MHz radio sending and receiving unit, so not only can one send out you can also receive.

Talking Pi Pin Mappings

Talking Pi provides support for servo PWM control with a total of six addressable channels. The six-channel servo PWM can be used to control several robot’s motors and even make a complete six degree of freedom robotic arm. Furthermore, it is possible to address devices and circuits via the GPIO interface of the Raspberry Pi. The Talking Pi expansion module is also compatible with Google Home and the AIY project.

Measured at 64 x 10 x 54mm, the module will be ideal for size-sensitive applications. The module includes a stereo microphone added through an extra additional board and its integrated I2S sound output driver allows connection for a 3-watt loudspeaker.

Talking Pi plugged to the Raspberry Pi

This module is available and currently being marketed by Conrad Business supplies. The module is available for purchase on Elektor at a price of $42 and reduced price of $38 for its members. For more information about using the Talking Pi in your Raspberry Pi project, you can download the documentation pdf here.

Raspberry Pi Zero WH – No Soldering Raspberry Pi Zero W

The Raspberry Pi Zero W is a single board computer and a great way to get started with learning coding and hardware projects. The “W” in the Raspberry Pi Zero signifies the board contains inbuilt Wifi and Bluetooth. Costing around $10, the Raspberry Pi Zero W is a great board to kickstart a lot of hardware projects and has found love in the maker’s community.

The Raspberry Pi Zero W is great but doesn’t feature any header pins which could be challenging for beginners, people that want to do a quick prototyping and the ones that don’t want to void the Pi Zero W warranty. Introducing the Raspberry Pi Zero WH, the Raspberry Pi Zero W with added 40 GPIO (General Purpose Input Output) male header pins.

Raspberry Pi Zero WH

The Raspberry Pi Foundation has removed the compulsory soldering barrier that comes with the Raspberry Pi Zero W by adding a pre-soldered 40-pin header to the Zero W. This Pi Zero WH is perfect for those who don’t own a soldering iron, hate soldering or who wants the extra soldering legwork done for them at a price of course.

The following are some of the specifications for the Pi Zero WH:

  • SoC – BCM2835 (same as Pi 1) but up-clocked to 1GHz, so 40% faster
  • RAM – 512MB RAM
  • Storage – microSD Slot
  • Connectivity – Bluetooth 4.1 (Bluetooth Low Energy) and 802.11 b/g/n WiFi
  • USB – 1x Micro USB OTG port, 1x Micro USB port for Power.
  • Camera – CSI Camera Connector
  • Video – Mini HDMI port and composite Video
  • Power Supply – 5V DC Volts via micro USB port.
  • Dimensions – 65mm x 30mm x 5mm.

The Raspberry Pi Foundation’s community manager Ben Nuttall, wrote: “You can live boot the Raspberry Pi Desktop OS from a USB stick, use Linux PCs, or even install [the Pi OS] on old computers. Then you have really simple access to physical computing without full Raspberry Pi setups, and with no SD cards to configure.”

The Raspberry Pi Zero WH is available for purchase online and comes with a price tag of about £13.25 ($18.25), a difference of about $5 over the Pi Zero W. The Raspberry Pi Zero WH can be purchase from pimoroni and other Raspberry Pi retailers. More information can be found at the Raspberry Pi Blog announcement.

Overclocking Raspberry Pi

How to overclock the Raspberry Pi device? Don’t matter if you are looking for the way to overclock the Raspberry Pi 3 or overclock the Raspberry Pi 2 – the algorithm stays the same.

The only thing should be taken into consideration is that the Raspberry Pi 3 has significantly improved processor performance compared to previous models. Through various techniques such as overclocking and overvoltage, we can get even more power out of the Raspberry Pi 3. While Raspberry Pi 2 device will always be a little bit behind on performance due to basic technical peculiarities.

Overclocking, basically, is the way to boost Raspberry Pi hardware performance by tuning up several device parameters. For that, additional hardware and special skills are required. Also, you’ll need to implement several tests to make sure of changes to take effect as well as keep your device from damage.

As you have already understood, the overclocking of your Raspberry Pi 3 exercises some risks. What are they and how to avoid them, read in this article on the link.

The ezPixel is an Upcoming FPGA based WS2812B Controller Board

FPGAs are field programmable gate arrays which basically means they are reconfigurable hardware chips. FPGAs have found applications in different industries and engineering fields from the defence, telecommunications to automotive and several others but little application in the maker’s world. Mostly, as a result of being largely difficult and high cost as compared to the likes of Arduino, but the introduction of the ezPixel and other similar FPGA boards is making this a possibility.

Prototype modules.

The ezPixel board, by Thomas Burke of MakerLogic, is a small size FPGA based circuit board that can be used to drive up to 32 strings of WS2812Bs, for up to 9,216 LEDs in total, a very first of its kind. These WS2812B programmable color LEDs have been a phenomenon in the maker’s world, being used in various Led Lights and creating of various Light Artworks. These popular LEDs comes in strings that can be cut to any length, and only require a single wire serial data connection to control all the lights in the string individually, and multiple strings can be stacked together to create large two-dimensional displays.

ezPixel description.

Most WS2812B controller boards can be used to control up to hundreds of these LEDs, but not thousands of them. The ezPixel board is a perfect fit for applications that use thousands of these LEDs. The ezPixel board is powered by the Intel MAX FPGA, a single chip small form factor programmable logic device with full-featured FPGA capabilities, and it’s designed to interface with other Micro-controllers or any SPI/UART host device. The ezPixel board serves as bridge between microcontrollers and long WS2812B strings. A user sets the length of each string using simple commands that are sent via the SPI or USB/UART communication link.

The following below are the features of the ezPixel:

  • WS2812B Smart Pixel Controller.
  • Up to 32 Strings can be controlled independently.
  • Up to 9216 LEDs can be controlled.
  • Communication:
    • USB/UART Interface.
    • SPI Interface.
  • Read/Write Pixel Memory.
  • FPGA – Intel MAX10M08 FPGA.
  • Dimension:
    • 1” x 3” (25mm x 76mm).
  • SPI Flash.

The ezPixel can run as a standalone display controller as a result of its serial flash memory chip, and this board is slated for a crowdfunding campaign in early 2018.

MATRIX Voice: Open-Source Voice Recognition

MATRIX Voice is a”Voice Recognition” development board, designed for the Raspberry Pi or Stand-alone with ESP32 (WiFi/BT/MCU)

MATRIX Voice is an open-source VOICE RECOGNITION platform consisting of a 3.14-inches in diameter dev board, with a radial array of 7 MEMS microphones connected to a Xilinx Spartan6 FPGA & 64 Mbit SDRAM with 18 RGBW LED’s & 64 GPIO pins. Providing developers the opportunity to integrate custom voice & hardware-accelerated machine learning technology right onto the silicon. An ESP32 Wi-Fi / BT enabled 32 bit microcontroller version is available. It’s for makers, industrial and home IoT engineers.

The project is already funded on indiegogo.com and shipping begins next week.

IOT-GATE-RPi: mini-PC/gateway build on the RPi CM3

CompuLab introduces IOT-GATE-RPi – a miniature, low cost industrial IoT computer, built around the Raspberry Pi 3 Compute Module.

Targeting IoT connectivity and control applications, IOT-GATE-RPi features a variety of wireless and wired interfaces. All-metal, rugged housing and support for wide temperature range of -40C to 80C make IOT-GATE-RPi a versatile solution for installation in harsh environments. IOT-GATE-RPi has been designed for full compatibility with Raspberry Pi software and runs standard Raspberry Pi OS images.

Thanks to its rich software eco-system, Raspberry Pi is widely used by IoT system designers for software development and quick proof-of-concept. IOT-GATE-RPi turns Raspberry Pi into an industrial-grade IoT computer, allowing fast and seamless transition from a Raspberry Pi proto-type to mass-production deployment.

Designed for IoT applications

IOT-GATE-RPi expands standard Raspberry Pi functionality with additional features necessary for typical industrial IoT systems:

  • Built-in 3G/LTE cellular modem with on-board SIM socket
  • Dual Ethernet ports
  • Up-to 64GB of on-board, soldered eMMC storage
  • RTC with battery back-up
  • RS485 and CAN bus interfaces

IOT-GATE-RPi functionality can be further extended with Raspberry Pi HAT expansion boards.

[via]

IOT-GATE-RPi: mini-PC/gateway build on the RPi CM3 – [Link]