Home Blog  





26 Mar 2015

20150322012942-pet

3D Printers, CNC Mills, Laser cutters, Pick n Place robots…Brainboard v2 will rule them all!

Brainboard v2 is a modular CNC controller board based on LPC1768/69 Cortex-M3 chip. Due to its modular design it allows easier upgrades as per requirements and easy replacement if there is any broken part. It runs on open source Smoothie modular firmware and is targeted at 3D Printers, Laser cutters, CNC Mills, Pick and Place and other small or Mid-size CNC machines. Upgrade your machines for higher performance and features.

Brainboard v2: Demon of CNC controllers - [Link]

21 Feb 2015


This schematic shows the TI AMC1200 in a motor control application.  The motor phase current is measured at the resistor (RSHUNT), and the signal is processed through an RC filter before reaching the AMC1200.  Also shown are optional protection capacitors C3 and C4.  The TI AMC1200 get its high side power from the power supply of the upper gate driver, and a 5.1V zener diode regulates the voltage.  The high transient immunity of the AMC1200 and AMC1200B ensures reliable and accurate operation even in high-noise environments such as the power stages of the motor drives.

Motor Control using TI AMC1200 - [Link]

3 Feb 2015

pwm_dc_motor_driver_atmega-600x575

Davide Gironi writes:

The PWM frequency have to be selected in the way that the switch frequency is much higher than the dynamics of the motor.
To avoid noise from the motor, the choosen PWM frequency is 20Khz. Which is a know to know frequency.
So, with this one, you can drive up to 4 motors independently controlling:
*speed
*direction
*slow start / stop
Setup parameters are contained in dcmotorpwm.h

This library was developed on Eclipse, built with avr-gcc on Atmega8 @ 8MHz.

[via]

Driving a DC motor using PWM with AVR ATmega - [Link]

30 Jan 2015

DSC_8642

What a CAM Drive can or can not do:

A CAMdrive node must be selected according to the motor.
That is:
Stepper motors need a Stepper Controller of CAMDrive.
Normal DC motors need a CAMdrive-BrushedDCMotor controller.

To connect with Bluetooth, only one node needs the Bluetooth module. The remaining nodes are wired via the bus.

There is only one power supply required! No matter which node is connected, it supplies the remaining nodes and motors on the bus

It does not matter on which node the camera is connected, it all work “Camera” jacks simultaneously.

The bus connection is established via a standard network cable (patch cord).

CamDrive – an open source multi-axis control for time-lapse photography - [Link]


2 Jan 2015

obr1649_1

Minimum noise, easy speed control and a high power, those are another reasons why to decide for GreenTech EC fans from EBM-Papst.

A term „EC fan“ (electronic commutation) is generally used to mark energy-saving AC fans. In fact, these are DC (brushless) fans with AC/DC module and other electronics. EC fans reach up to 90% efficiency and they consume 50% less energy than traditional AC fans.
At the same time, a typical „50Hz“ motor noise is eliminated at EC fans and practically the only noise source is aerodynamic noise depending on overall fan design.

A good example of a modern fan is for example the type G1G140-AW31-42 i.e. radial (centrifugal) fan with 140mm diameter. Efficient motor with a „Soft start“ function enables to control fan speed through a DC input (0-10V) or PWM. To check a proper function, the fan also features „Tach“ output (2 pulses / revolution) as well as locked motor protection.
Thanks to the built-in electronics, at cyclic use it´s recommended to switch-off the motor through a control signal, not by switching-off main power supply.

G1G140-AW31-42 is suitable for a continuous operation (S1) and can be mounted in any position. It´s used for example for building ventilation.
Detailed information will provide you the G1G140-AW31-42 datasheet.

Modern EC fans are able to save up to 50% of energy - [Link]

13 Dec 2014

DC-Motor-Control_top-view_plain

by elektor.com:

Infineon have announced two shields for the Arduino development environment. The RGB LED Lighting Shield (shown left) provides three independent output channels with a DC/DC LED driver stage to give flicker-free control of multicolor LEDs. It is fitted with an XMC1202 microcontroller using a Brightness Color Control Unit (BCCU) to help off-load time-critical events from the Arduino processor. The Shield can be expanded by adding an optional isolated DMX512 interface for stage lighting control and audio nodes or a 24 GHz radar sensor for motion detection.

Arduino Shields from Infineon - [Link]

13 Dec 2014

by w2aew @ youtube.com:

This video shows a simple circuit that can be used to control the position of an typical remote control (RC) style servo with an analog voltage. The PWM (pulse width modulated) control signal format for an RC servo is reviewed, followed by the presentation of a simple circuit that can be used to control the servo with a simple adjustable DC voltage. The circuit is built with rail-to-rail op amps and a few resistors and capacitors. Note that the schematic presented doesn’t include all of the decoupling on the power supply and reference lines that you would likely want to include. A description of the circuit, as well as a more in depth discussion of each of the building blocks such as an integrator, hysteresis comparator and DC signal conditioner circuit including an attenuator, inverting amplifier and level shifter, is presented.

Circuit Fun: Control an RC Servo with an adjustable DC voltage - [Link]

27 Nov 2014

15612566357_3f26a9a28e

by  Ioannis Kedros:

I’ve start building multicopters (or drones if you like it better) five months ago! My first one was a scratch build tricopter based on a KK2.1.5 flight controller and three DT750 motors. Everything was made out of plywood and pinewood! It held excellent if you consider that I was a newbie pilot (still I am) and I had something like 3-4 crash reports per flight!

Two moths ago I decided to go a step further and make my second multicopter. This time it will look a little bit more professional than my previous one! To begin with it will be a quad copter, carry a better flight controller, reuse parts of the previous build (in order to lower the cost) and it will be able to stay above the ground longer.

Making a Quadcopter - [Link]

7 Oct 2014

FF7YQ75I0XOISBQ.MEDIUM

by JColvin91 @ instructables.com:

Whether we care to admit it or not, motors can be found all over in our everyday lives; they just tend to be hidden. Motors are present in cars, printers, computers, washing machines, electric razors, and much more.

However, there are a number of people (which until recently included myself) that would be uncertain of how to make a motor run if they were handed one. So, let’s learn something today. Let’s learn how to use a stepper motor!

How to use a Stepper Motor - [Link]

24 Sep 2014

F333CB7I04J77E2-600x450

An instructables on motor controllers for cheap robots by JayWeeks

Almost every robot needs to power a motor of some sort or another. Problem is that motors take quite a lot of power, compared to what most microcontrollers operate with. To solve this problem, robots use what is called a motor controller, which usually amounts to some form of electronic switch that can turn on a very high voltage, using a very low one. That’s what we’ll be making today!

[via]

Motor controllers for cheap robots - [Link]



 
 
 

 

 

 

Search Site | Advertising | Contact Us
Elektrotekno.com | Free Schematics Search Engine | Electronic Kits