Raspberry Pi Clever airplane tracker

flyover-nighttime

Jeremy B. Merrill lives near the LaGuardia airport and a lot of planes fly over his house all day long, so he decided to build a LED display showing the departure airport of the airplane that’s flying overhead. For that reason he used a Raspberry Pi, a Software-Defined Radio antenna and open source software that collects and decodes special airplane data, such as location, altitude, registration number etc.

Passenger jets reportedly collect one terabyte of data about themselves per flight. Of that terabyte, most airliners broadcast a tiny portion, unecrypted, over the air, via radio systems called ADS-B and Mode S. Every few seconds, they announce their location, altitude, registration number and – usually – the flight number.

Dump1090 is a program that listens to those broadcasts. Its web interface shows each plane’s precise location and path. I can pick up just about any plane within line of sight of my north-facing window in Prospect Heights. I can “see” planes well into Connecticut or Rockland County, but if the plane shows up even over Prospect Park, I often can’t detect it.

Raspberry Pi Clever airplane tracker – [Link]

How to burn an Arduino UNO bootloader to a new ATMEGA328P-AU chip

This video shows the steps to burn the bootloader from an Arduino UNO, to a new ATMEGA328P-AU chip. The new chips are the TQFP 32 type package.

How to burn an Arduino UNO bootloader to a new ATMEGA328P-AU chip – [Link]

LTC3106 – 300mA Low Voltage Buck-Boost Converter with PowerPath

3106

Linear Technology announces the LTC3106, a highly integrated, 1.6µA quiescent current 300mV start-up buck-boost DC/DC converter with PowerPath™ management, optimized for multisource, low power systems. The LTC3106 is ideal for powering low power wireless sensors from rechargeable or primary batteries supplemented by energy harvesting. The LTC3106 incorporates maximum power point control (MPPC) making it compatible with common high impedance power sources, including photovoltaic cells, thermoelectric generators (TEGs) and fuel cells.

LTC3106 – 300mA Low Voltage Buck-Boost Converter with PowerPath – [Link]

Arduino TFT Forecast Weather Station with ESP8266

FDC070SI58IDAY9.MEDIUM

tufantas @ instructables.com has build a weather forecast display using  Arduino Mega 2560, 7″ inch TFT display and ESP8266 Wifi module. The display shows 3 days weather forecast, Current weather conditions, Current wind directions & speed with analog gauge meter, Indoor temperature and NTP time.

Arduino TFT Forecast Weather Station with ESP8266 – [Link]

Maker’s rule, the feature packed PCB multi-tool

23602748930_9d9270b930_z

Rohit Gupta @ rohitg.in has designed a new version of his maker’s rule that is compact and packs many features like a LED tester and continuity tester:

It has been a while since i posted my Tinker Rule which i made during college days. I received a few requests for the ready to etch pdf which helped me gauge if this seemed to be useful to people. The response was somewhat positive and so, i decided to put in some extra effort and make it handy, portable and manufacturable !

Maker’s rule, the feature packed PCB multi-tool – [Link]

RELATED POSTS

DC Output Solid State Relay

DC_Solid_State_Relay_I052A

DC Output Solid State Relay 10Amps 60V DC (Optically Isolated Input)

This project has been designed around TLP250/352 which is Opto-Coupler IGBT/MOSFET Gate Driver from Toshiba and Mosfet IRFP260 from IR, This relay consists of optically isolated gate driver and low impedance Mosfet. The combination of low resistance and high load current handling capabilities make this Relay suitable for a variety of switching applications. These devices are ideally suited for controlling high voltage and current DC loads with solid state reliability while providing 3750V isolation from input to output.

A solid-state relay (SSR) is an electronic switching device that switches on or off when a small external voltage is applied across its control terminals. SSRs consist of a Opto-isolator which responds to an appropriate input (control signal), a solid-state electronic switching device which switches power to the load circuitry, and a coupling mechanism to enable the control signal to activate this switch without mechanical parts. This relay designed to switch DC Load up to 10Amps. It serves the same function as an electromechanical relay, but has no moving parts. Solid-state relays have fast switching speeds compared with electromechanical relays, and have no physical contacts to wear out. Input trigger voltage 3V to 9V DC (1.5V to 12 V with Transistor) and output load 10Amps and supply 12V to 60V DC (100V DC also Possible). Gate Driver required supply 12V to 18V DC. Heat sink required for peak load.

DC Output Solid State Relay – [Link]

RELATED POSTS

Photoplethysmography – IR Heart Rate Monitor

F4ZW3SBIJOMQ3G4.MEDIUM

SteveQuinn @ instructables.com show us how to create a heart rate monitor using an IR phototransistor and Arduino and display the data on a TFT screen.

This Instructable documents how to create a simple heart rate monitor using Photoplethysmography with an IR phototransistor via transmissive absorption using the Arduino to process the pulsatile data and display live results via a TFT screen.

To use the source code and create the necessary circuitry you will need a reasonable grasp of electronics, knowledge of the Arduino, a DMM and some patience.

Photoplethysmography – IR Heart Rate Monitor – [Link]

Kinetis KEA128 StarterTRAK for CAN Applications

This reference design is a low-cost development kit based on Kinetis EA series MCUs that allows faster prototyping and tool reuse. This evaluation board features either one of the KEA128, KEA64 or KEA8 MCUs, depending on the board version. This particular design uses KEA128. The Kinetis EA series MCUs are a highly scalable portfolio of 32-bits ARM Cortex -M0+ MCUs aimed for general automotive applications. The family is optimized for cost-sensitive applications offering low pin-count option with very low power consumption.

This design utilizes a Kinetis KEA128 MCU, which has an ARM Cortex-M0+ core. Also, it features a CAN module, a UART module with LIN capabilities, a pulse width timer (PWT) and a keyboard interrupt module (KBI). All these peripherals along with standard serial communication protocols such as I2C and SPI offer flexibility for a wide variety of applications. The TRK-KEA board includes an onboard OpenSDA programmer and debugger, LIN physical transceiver, CAN physical transceiver, a light sensor, four LEDs and two pushbuttons for user interface.

With 2.7V-5.5V supply and focus on exceptional electromagnetic compatibility (EMC) and ESD robustness, Kinetis EA series MCUs devices are well suited to a wide range of applications ranging from body applications, powertrain companion chips or generic sensor nodes, park assistance, pump/fan controller, and motorcycle CDI/EFI. In automotive body applications, the Kinetis EA series MCUs are a great option for entry level body controller or gateway module, window/roof/sun-roof controller, immobilizer or seat/mirror controller, ambient lighting, just to mention a few.

Kinetis KEA128 StarterTRAK for CAN Applications – [Link]

ATMEGA328 Component Tester

FAD5FSEIJORXCZM.MEDIUM

baweja_akshay @ instructables.com has build a ATMEGA328 component tester that is able to test Resistors, Capacitors, Inductors, BJT, FET, Thyristors and more.

Coming upon COMPONENT TESTER so it can test almost everything, obviously not the power components because they require more current and power which our AVR Microcontroller couldn’t handle !! Oh yeah, I forgot to tell you guys that we would be using an ATMEGA328 for our build !!

ATMEGA328 Component Tester – [Link]

First look at the WeMos D1 Arduino compatible ESP8266 Wifi Board

In this video educ8s.tv take a look at the WeMos D1: a Wi-Fi enabled Arduino compatible board based on the ESP8266 chip.

First look at the WeMos D1 Arduino compatible ESP8266 Wifi Board – [Link]