MetCal Connection Validation – The Next Generation of Soldering

Making solid connections between electrical components on a board is an important part of many hardware projects. A good solder joint forms an alloy at the surface of the PCB and the component lead. During soldering, a solder connection on a circuit board can quickly turn into a real nightmare if not caught immediately, ending up with a too thin or too thick solder joint.

Connection Validation is MetCal’s latest innovation in hand soldering. It allows you to precisely apply the solder to your components. MetCal Connection Validation is to complement or even replace the standard visual inspection during soldering, where now the soldering iron will do it instead.

MetCal Connection Validation (CV) evaluates the quality of the solder joint by calculating the intermetallic compound formation immediately after the soldering iron’s tip is placed on the joint to solder, and it provides closed loop feedback to the operator visually. Connection Validation provides feedback to the operator via the LED light ring integrated into the hand-piece. The Soldering Iron will light up green when the correct intermetallic thickness has formed, and a red light comes on if an error has occurred.

The following are some of the features and benefits of Connection Validation Soldering Station:

  • SmartHeat Power on Demand Technology
  • Patented Connection Validation IMC Formation Technology
  • 2.8” color touchscreen with bold graphics
  • Communications Port for process traceability data and firmware graphics
  • Precise tip temperature display
  • Integrated Net Power Meter and power graph
  • Patented Chip-in-Cartridge technology
  • Closed loop bi-directional communication
  • Stores and records cartridge attributes
  • Provides traceability information
  • Protects power supply from non-conforming cartridges
  • Backwards compatible with MX series power supplies
  • Password protection

Introduced at IPC APEX 2017, MetCal’s exciting patent technology was met enthusiastically by contract manufacturers and electronics assembly leaders worldwide.

Arduino Real Time Clock with DS1302 and Nokia 5110 LCD Display

Hi guys, in one of our previous tutorials, we made a real time clock, using the DS3231 RTC Module and the 1602 LCD display module. For this tutorial, we will be building something similar using the DS1302 RTC module and the Nokia 5110 display module. Unlike the 1602 LCD module which was used in the previous tutorial, the Nokia 5110 LCD module has the ability of displaying customized graphics which will help us display our data with better UX.

Arduino Real Time Clock with DS1302 and Nokia 5110 LCD Display – [Link]

Sensirion presents CO2 and RH/T Sensor Module

At this year’s AHR Expo 2018 trade show in Chicago (January 22 – 24, 2018), Sensirion, the expert in environmental and flow sensor solutions, is introducing the SCD30 – a humidity, temperature and carbon dioxide concentration sensor.

CMOSens® Technology for IR detection enables highly accurate carbon dioxide measurement at a competitive price. Along with the NDIR measurement technology for CO2 detection, a best-in-class Sensirion humidity and temperature sensor is also integrated on the same sensor module. Ambient humidity and temperature can be outputted by Sensirion’s algorithm expertise through modeling and compensating of external heat sources without the requirement for any additional components. Thanks to the dual-channel principle for the measurement of carbon dioxide concentration, the sensor compensates for long-term drifts automatically by design. The very small module height allows easy integration into different applications.

Carbon dioxide is a key indicator of indoor air quality. Thanks to new energy standards and better insulation, houses have become increasingly energy efficient, but the air quality can deteriorate rapidly. Active ventilation is needed to maintain a comfortable and healthy indoor environment, and to improve the well-being and productivity of the inhabitants. Sensirion’s SCD30 offers accurate and stable CO2, temperature and humidity monitoring. This enables customers to develop new solutions that increase energy efficiency and simultaneously support well-being. With the new SCD30, Sensirion has expanded its portfolio to include environmental sensor for air quality measurement.

Visit Sensirion at AHR Expo 2018 (Booth 3858) and learn more about the SCD30, Sensirion’s new humidity, temperature and carbon dioxide sensor module.

Discover more about relevant environmental parameters and Sensirion’s other innovative environmental sensors at www.sensirion.com/environmental-sensing

Printed circuit board manufacturer – JLCPCB Review

Recently, I had the opportunity to test the printed circuit boards (PCB) offered by JLCPCB. These tests were made in two different boards of the brand and here I’ll report my impressions about them.

Due to the spread of the maker culture and the do-it-yourself (DIY) and easy access to components and a huge amount of technical information available on Internet, it has become much simpler to develop a solution to a problem or just have fun soldering some components.

However, taking the design out of a breadboard (or universal board) and turning it into a PCB stills a big challenge, mainly due to the costs involved.

And  exactly at this point the services offered by JLCPCB make the difference, offering a high level service of PCB manufacturing with an  extremely competitive cost.

Requesting the production of PCBs is quite simple and there are two basic ways to do it. If you are developing within EasyEDA just click on “Gerber Output” and your gerber file will be generated and transferred directly to the JLCPCB system.

(more…)

A Temperature Logger to Protect Sea turtles

Low-cost/power/size temperature logger

Data loggers are small, battery-powered devices used to sense and store information in different situations. They include a microprocessor, data storage, one or several sensors and they can record information for a very long period. However, some data loggers do not include sensors, but have ports that allow a sensor to be connected. They are used indoors, outdoors, and underwater for recording precise information about the environment they are in. Some applications may include monitoring light or temperature in crops, filed conditions, water level, and indoor humidity etc. Additionally, the information on these loggers can be accessed remotely or via USB.

In Hackaday a man named Nikos started a project to protect sea turtles through  research which consisted of creating a small, cheap, and power efficient temperature logger. Temperature is one of the main factors in sea turtle egg incubation success, because of climate change increasing temperatures may affect this process, so researching and monitoring temperature changes in sea turtle nesting habitats is necessary to mitigate the impact of a changing climate.

The objective of the project is to develop a temperature logger that is accurate, stores records for at least 180 days, samples temperature every 10 minutes, can operate for 180 days with a coin cell battery, is waterproof, costs less that 5 euros and can easily transfer information via computer cable. For research a huge quantity of data is needed which is why many companies use many loggers with a lot of storing capability, but this may result in high costs.

The sensor chosen for the project is the MAX30205 which can achieve a 16-bit resolution at a low consumption and cost. The creator also considered the Silicon Labs’ Si7051 and Texas Instruments’ HDC1080, but the MAX30205 was chosen because it had more details in accuracy over its operating range (which is better for scientific research).

As the temperature sensor gives its reading in 2 bytes then for the 180 days with 10 minutes intervals of reading 414720 bits will be needed, so a 512 Kbit memory was chosen. Taking price into consideration the Adesto’s AT25DN512C that comes in TSSOP-8 package was chosen. An advantage is that this type of package is small enough for the objective and its also available for 4 Mbit versions, so extra memory can be used. Also, the mcu used was the ATMEGA328PB-MN.

The project has not been finished and some improvements have been made and others are planned to be made soon. If you want to follow this project and know how it develops you can found it on its Hackaday official website.

Angle Sensing with Circular Vertical Hall Technology

Angle sensing has always been challenging particularly in industrial and automotive environment because of the need for precise and accurate sensing at high speeds. Allegro Microsystems developed the A1330 an integrated circuit angle sensor that works based on magnetic Circular Vertical Hall (CVH) technology. Unlike other angle sensors Allegro’s A1330 does not require a concentrator or a complex packaging assembly which results in lower costs.

The A1330 SoC (system on chip) include a CHV front end, digital processing, and analog output driver, and an on-chip EEPROM technology that allows up to 100 read/write cycles. This allows customer to program and calibrate parameters easily. Additionally, it has adjustable internal averaging that allows respond time to be traded for resolution. On the other hand, with averaging not enabled A1330 provides fast analog response time.

All the characteristic mentioned above makes the sensor ideal for low rotational velocities with high precision. The fact that angle scaling can be programmed allows for easy detection of mechanical failures by selecting minimum and maximum angle values that when surpassed might mean a problem.

In automotive industry hall sensors are used for fuel level, brake and clutch pedal switches, electronic parking brakes and much more. The advantage that the A1330 offers is higher immunity to parasitic fields and it can support higher target magnetic field levels (since it measures phase not amplitude). Also, it offers better temperature drifts performance which is an advantage in automotive industry where temperatures can get high. Its operational voltage is 3 V and its magnetic sensing is parallel to surface of the package, it has a current regulator for two wire operation, and a reverse battery and overvoltage protection. The package is lead free and A1330 is available as either single- or dual die option in a 8 pin TSSOP standard packaging. All the complete specifications can be found in Allegro´s website.

It is a 360˚ sensor that has ground breaking CVH technology for accurate measuring. The CVH technology is unique to Allegro which is a competitive advantage in price and accuracy. It was mainly created for industrial purposes since its precision might be too much for personal purposes. Information about prices, distributors, and availability can be found on Allegro´s official website.

[Source]

Sino: bit – Changing Programming for Kids All Over the World

Creating projects with Arduino can be challenging for kids, this may cause children to lose interest in electronics and DIY projects. The most complicated part is usually the connections required to use a sensor, led matrix or other devices that can be connected to the Arduino (or other microcontrollers). Since all these devices are different and have different types of connections which need to be made in a certain way, electronic projects may get boring or too complicated for a kid to learn. If the objective is to teach a kid how to code without the extra complication of cables, then the Sino: bit is the perfect choice.

Sino: bit is a microcontroller designed for teaching computer education in China created by Naomi Wu a DIY enthusiast. It is based on Calliope mini and can be programmed with Arduino IDE. It includes a 12×12 LED matrix, accelerometer, magnetometer, Bluetooth, buttons, a micro USB for programming, temperature sensor and a JST 3v battery connector. The battery connector was included to run projects without the need to be connected to the computer at all times.

Usually, when learning how to program kids are taught “hello world” which is a simple code that displays the same message. The 12x 12 LED matrix has that size not only to allow kids to play with a huge number of LEDs, but also to allow kids from every nation to do and understand their hello world. This was a problem because Chinese, Japanese, Hindi and other languages contain characters that cannot be displayed in a small matrix.

It’s the first to obtain the OSHWA (open source hardware association) certification in China which is an association in charge of making the task of identifying and marketing open source hardware products clearer and more transparent.

With a simple installation procedure, codes such as blink can start to work, and children all over the world would be able to experience “hello world” in their own language which will bring opportunities and open doors for non-English speaking kids. With all the sensors and options that it offers projects can be as simple as playing with LEDs and as complex as communicating with an external app to send information about the sensors. With the use of Sino: bit not only programming will be more inclusive, but also more code focused because instead of spending a lot of time thinking about connections kids can test their projects faster and with less room for errors.

[Source]

@Ricoh RP604 300 mA Buck-Boost #DCDC Converter for #IoT applications

This product is in particular suitable in case a supply voltage is required which is somewhere in between the voltage level of a fully charged and fully discharged battery. At a certain moment the DC/DC Converter needs to switch over from Buck to Boost mode automatically. The RP604 is designed for IoT applications which are mainly in a sleep mode and wake-up periodically to perform a measurement, transmit some data and resume to sleep mode again. For such kind of applications, the current consumption in sleep mode should be kept as low as possible. The RP604 consumes only 0.3 µA and has a peak efficiency of 90% at 0.1 mA output current.

The Little Buddy Talker – Arduino Compatible Speech Chip Set

Small, versatile, fun, and inexpensive! Use the 254 word library to bring speech to your Arduino projects! Speak, Arduino, Speak!

About a year ago, I designed an Arduino shield that allowed for you to add voice to your electronic designs.  I’ve since been able to minimise that design into a much less inexpensive, and smaller unit.  This unit has a 254 word library that consists of colours, commands, months/days/time, numbers, directions, feelings, units of measurement, security words, math lingo, and general words; all of which are spoken by “Lucy” – A lovely female voice with an English accent! Meet “The Little Buddy Talker” Arduino compatible speech kit set!  It is Production Ready, and eager to land in your hands!

The project is live on kickstarter and has 29 days to go.

Micro-spectrometer Sensor Will Let You Check Air Quality Or Blood Sugar – Using Smartphone

Now you can use your smartphone to check how clean the air is, measure the freshness of food or even the level of your blood sugar. This has never been so easy. All credit goes to the new spectrometer sensor which is developed at the Eindhoven University of Technology and can be easily attached to a mobile phone. The little sensor is just as precise as the normal tabletop models used in scientific labs. The researchers published their invention on 20th December in the popular journal Nature Communications.

The blue perforated slab is the upper membrane, with the photonic crystal cavity in the middle
Spectrometer sensor construction: The blue perforated slab is the upper membrane, with the photonic crystal cavity in the middle

Spectrometry is the analysis of the light spectrum. It has an enormous range of applications. Every organic and inorganic substance has its own unique ‘footprint‘ in terms of light absorption and reflection. Thus it can be recognized by spectrometry. But precise spectrometers are bulky and costly since they split up the light into different colors (frequencies), which are then measured separately.

The intelligent sensor developed by Eindhoven researchers is able to make such accurate measurements in an entirely different way. It uses a special photonic crystal cavity that acts as a ‘trap’ of just a few micrometers into which the light falls and cannot escape. This trap is situated in a membrane. In the membrane, the captured light generates a tiny electrical current which can be measured accurately. The accurate working cavity design is made by Žarko Zobenica, a doctoral candidate.

The sensor can measure only a narrow range of light frequencies. To increase the frequency range, the researchers placed two of these membranes above each other closely. The two membranes affect each other. Changing the separation gap between them by a tiny amount also changes the light frequency that the sensor recognizes. To understand this the researchers, supervised by professor Andrea Fiore and associate professor Rob van der Heijden, included a MEMS or micro-electromechanical system.

This mechanism can change the measured frequency by changing the separation between the membranes. In this way, the sensor is able to cover a range of about thirty nanometers. Within which the spectrometer can recognize some hundred thousand frequencies with an exceptional precision. The research team demonstrated several applications like an extremely precise motion sensor and a gas sensor. All made possible by the clever use of the tiny membranes.

As per Professor Fiore‘s expectations, it will take another five years or more before the new spectrometer actually gets into a Smartphone. The main difficulty at this moment is the frequency range covered is still too small. It covers only a few percent of the most common spectrum, the near-infrared.

Given the huge potential and the wide field of applications, micro-spectrometers can become just as important as the camera in the smartphones of future.