Digital UV-meter with OLED Display

@ instructables.com build a nice VU meter using Arduino and an OLED display.

Hello, instructable. Today I will tell you how to make a simple digital VU meter (sound level meter) using Arduino and OLED displays and 2 resistors by yourself (DIY). The device is quite simple, for beginners it will be a rewarding experience.

Digital UV-meter with OLED Display – [Link]

Sonnet Off-Grid Device, The Smartphone Walkie-Talkie

At Sonnet Labs, a group of avid outdoor enthusiasts aim to democratize mobile communication with technologies that enable smartphones to send text messages, image data, and GPS locations without Internet connectivity, cellular coverage, or satellite reception.

No need for cellular grid with Sonnet

Therefore, they launched their product, Sonnet, the smartphone walkie-talkie! Sonnet is a wireless device that brings the long-range wireless communication capability of the 2-way radio (walkie-talkie) to smartphones. In addition, it enables device-to-device data transfer through low-power, long-range radio frequencies dependently on cellular grids and infrastructures.

Accordingly, Sonnet can connect wirelessly to any smartphone. Also, it allows sending data up to many miles in distance to other smartphones that already are using Sonnet.

More features to come…

Sonnet uses mesh networking in order to reach users out-of-point relaying on sending data privately through other users in area. This data travelling through Sonnet is already end-to-end encrypted with AES. At the same time, the Sonnet Wi-Fi connection is protected with WPA/WPA2.

It also has the ability to charge your phone. Thanks to the 4000mAh battery capacity, Sonnet can charge your smartphone through its USB port.

Moreover, you don’t need to install software in your smartphone. It is enough to have an access to the app through your browser. The team tailored this feature to allow users who don’t have internet access to use the device easily.

Above all, one of the amazing features included is SOS mode. In case of emergencies. you can press the panic button. Next, Sonnet will send your GPS location and your message to all users in range.

Full specifications of Sonnet below:

In conclusion, Sonnet is the wireless device that enables you send instant messages, voice recordings, image data and GPS coordinates even if you don’t have cellular coverage or Internet access.

Sonnet is now live on a Kickstarter campaign and has already achieved 290% of its required funds. The campaign still has 28 days to go, where you can pre-order two pair of Sonnet for $89! Also check the official website for more details.

1.3” circular AMOLED modules only 0.6mm thick

by Julien Happich @ eedesignnewseurope.com
andersDX has added a round AMOLED (Active Matrix OLED) display to its range for wearable and instrumentation applications, complementing the circular PMOLED and touchscreen modules that it already offers.

1.3” circular AMOLED modules only 0.6mm thick – [Link]

ARM-Android open source platform for Linaro By Huawei

A development platform for the Android open source project (AOSP) has been created by Huawei. The ARM-based hardware is part of the Linaro open source collaborative engineering organization developing software for the ARM ecosystem.

Recently, Huawei has launched the HiKey 960 96Boards development platform to provide access to the latest ARM mobile technology for AOSP developers. Fortunately, You can find this new board  listed on the 96Boards website and is available through global distribution channels.

In fact, initial software support for the board is provided in the AOSP source tree based on the Android Common Kernel using the Linux 4.4 kernel release. Meanwhile, Linaro and Huawei are also working on the Linux 4.9 based Android Common kernel and maintaining support for the Kirin 960 SoC in the mainline kernel.org tree, allowing for the availability of multiple Linux distributions for this board in the future.

In addition, Huawei has released the source code with Linux and other open source libraries and programs for their Huawei Mate 9 / Mate 9 Pro and Huawei P10 / P10 Plus models powered by Hisilicon Kirin 960 processor. You can the source from Huawei open source page.

Full specifications of Hikey 960

  • SOC: Kirin 960 octa-core CPU
  • CPU: 4x Cortex-A53 cores to 1.8 GHz, 4x Cortex-A73 cores to 2.4 GHz
  • GPU: Mali-G71 MP8 GPU
  • Software: AOSP with 4.4 AOSP common kernel
  • Storage: 32GB UFS 2.0 flash storage, MicroSD card
  • Display interface: HDMI 1.2a up to 1080p plus 4-lane MIPI DSI
  • USB: 1 x USB 2.0 type C OTG port, 2 x USB 3.0 type A host ports
  • Connectivity: Dual-band 802.11 b/g/n/ac WiFi and Bluetooth 4.1 with on board antennas
  • Camera: 1x 2-lane MIPI CSI, 1x 4-lane MIPI CSI
  • IO extended interface: 40 pin low speed expansion connector +1.8V, +5V, DC power, GND, 2x UART, 2x I2C, SPI, I2S, 12x GPIO, 60 pin high speed expansion connector 4L MIPI DSI, 2L+4L MIPI CSI, 2x I2C, SPI (48M), USB 2.0, PCIe Gen2 on M.2 M Key connector
  • MISC: 4x user LEDs, LEDs for WiFi & Bluetooth, Power button
  • Power supply: 12V/2A power supply recommended, 8V-18V/2A via 4.75/1.7mm power barrel (EIAJ-3 Compliant)
  • Dimensions: 85mm x 55mm

At this point, Hikey 960 is available for $239 on Amazon (USA), Seeed, Lenovator and many other stores.

“The HiKey 960 delivers on the goal of 96Boards to provide access to the latest ARM technology to the developer community, with support for the latest Huawei mobile SoC featuring high performance ARM Cortex-A73 cores coupled with the latest generation of ARM Mali GPU technology.” – George Grey, CEO of Linaro

Moreover, you can find information about the HiKey 960 board here and about running Android from here: http://source.android.com/source/devices.html. Also, Linaro is providing instructions for developers here: http://linaro.co/hikey960-start.

Husarion launches CORE2 consumer robot controller

Robotic development platform creator Husarion has launched its next-generation dedicated robot controller CORE2. Available now at the Crowd Supply crowdfunding platform, CORE2 enables the rapid prototyping and development of consumer and service robots. It’s especially suitable for engineers designing commercial appliances and robotics students or hobbyists. Whether the next robotic idea is a tiny rover that penetrates tunnels, a surveillance drone, or a room-sized 3D printer, the CORE2 can serve as the brains behind it.

Husarion launches CORE2 consumer robot controller – [Link]

2-3A, 42-Vin Silent Switcher offers low-EMI regulation

LT8609S is a 2A (3A Peak), 42V input synchronous step-down switching regulator. The synchronous step-down Silent Switcher 2 Delivers 93% efficiency at 2 MHz with ultralow EMI/EMC emissions. By Graham Prophet @ eedesignnewseurope.com:
The LT8609S design reduces EMI/EMC emissions due to very well controlled switching edges, its internal construction with an integral ground plane and the use of copper pillars in lieu of bond wires. This improved EMI/EMC performance is not sensitive to board layout, simplifying design and reducing risk even when using two-layer PC boards.
2-3A, 42-Vin Silent Switcher offers low-EMI regulation – [Link]

LoRaCatKitty: Build IoT Applications with LoRa in 3 steps!

Based on the ESP8266 module, “Andres Sabas” unite the best of WiFi and LoRa, Facilitating the development of IoT solutions.

LoRaCatKitty is designed to simplify the development of Internet of Things (IoT) applications using the fabulous (but still underutilized) LoRa Technology. We have based our development on the ESP8266 WiFi module and the LoRa RN2903 or RN2483 microchip module, and we have designed it to allow you can create IoT applications without deep knowledge of technology.

White Paper: Cut the Cord with Power over Ethernet (PoE)

Providing AC power to each device individually is an extra cost especially for organizations when installing IP cameras, VoIP phones or network access switches and routers in the facilities. To help in this way some modern protocols, like USB and Ethernet, provide the power over the same data cable. However, USB is not designed for networking and long distance network applications. Besides that, the 900 mA at 5V in USB 3.0 is suitable for low-power devices like external hard disks but can’t provide enough power for high-power devices like switches and other network instruments. For these reasons, PoE (Power over Ethernet) can be the best choice.

CAT-5/5e twisted-pair Ethernet cable. Image courtesy of: CableOrganizer

PoE can provide power up to 30W beside data connectivity on any standard CAT-5/5e twisted-pair Ethernet cable, and supports 10Base-T, 100Base-T, 100Base-TX, and 1000Base-T Gigabit Ethernet interfaces.

The LEX Computech 3I390NX Series

As an example of an SCB (Single Computer Board) that provides PoE on its ports is a board called 3I390NX from LEX COMPUTECH which is based on the latest Intel Pentium Processor N4200/ N3350/E3950 Apollo Lake processor family. The Ethernet ports are provided by the Intel Ethernet controller i1211-AT.

3I390NX SCB features are:

  • Intel Apollo Lake N4200/N3350/E3950 CPU/chipset.
  • On Board 4GB DDR3L.
  • Display: HDMI, DP, VGA & eDP.
  • 5 x GbE (4 x PoE) LAN.
  • 2 x Mini PCIe.
  • 6 x USB.
  • HD Audio.
  • 2 x COM (1 x RS232 / 422 / 485 port (external), 1 x RS232 / 422 / 485 port (internal)).
  • Hardware digital Input & Output, 8 x DI / 8 x DO.

To know more about this SCB you can preview the full white paper published on IEEE Spectrum, or download it directly from here.

Renesas Electronics Achieves Lowest Embedded SRAM Power of 13.7 nW/Mbit

Renesas Electronics Corporation announced the successful development of a new low-power SRAM circuit technology that achieves a record ultra-low power consumption of 13.7 nW/Mbit in standby mode. The prototype SRAM also achieves a high-speed readout time of 1.8 ns during active operation. Renesas Electronics applied its 65nm node silicon on thin buried oxide (SOTB) process to develop this record-creating SRAM prototype.

Renesas Embedded SRAM prototype with SOTB Structure
Renesas Embedded SRAM prototype with SOTB Structure

This new low-power SRAM circuit technology can be embedded in application specific standard products (ASSPs) for Internet of Things (IoT), home electronics, and healthcare applications. The fast growth of IoT is requiring all the devices be connected to a wireless network all the time. Hence, products must consume less power to prolong battery life. With this new technology applied, much longer battery life can be achieved enabling maintenance-free applications.

One essential part of the development of IoT applications is the miniaturization of end products. This can be achieved by lowering battery capacity requirement of ASSPs. As an effort to reduce the power consumption in ASSPs for the IoT, there is a technique in which the application is operated in the standby mode and only goes to the active mode when data processing is required.

Now, the conventional way of saving power is to store all important data to an internal/external non-volatile memory and cut off the power supply to the circuit. If the wait time is long enough, this method is effective. But in most of the cases, the device has to switch between standby mode and active mode very quickly causing data-saving and restarting process extremely inefficient. There are even cases where, inversely, this increases power consumption.

In contrary to above, the new technology by Renesas Electronics uses a method where power consumption in standby mode is reduced a lot enabling switching operation to be performed frequently without leading to increased power consumption. Hence, it’s no more required to save data to non-volatile memory. This improves the efficiency further.

The low-power embedded SRAM which is fabricated using the 65 nm SOTB process, achieves both the low standby mode power consumption and increased operating speed.  Such features were difficult to achieve with the continuing progress of the semiconductor process miniaturization.  Renesas plans to support both energy harvesting operation and development of maintenance free IoT applications that do not require battery replacement by enabling ASSPs that adopt the embedded SRAM with SOTB structure.

To learn about all the complex technical information which is not covered in the scope of this article, visit the press release page of Renesas Electronics.

Quantum Internet Is Coming!

Secure and unhackable Internet is a goal of many researchers around the world. This is possible using an invisible quantum physical connections as networking links known as “quantum entanglement“. The main challenge is building  large networks that share entangled links with many particles and network nodes, because adding a node will weak the entanglement.

Researchers from Delft and Oxford have successfully found a way to form a strong entangled link. Their solution relays on merging multiple weaker quantum links into one to build a trustworthy quantum network between several quantum nodes.

The research group in known for its effort on implementing quantum entanglement to realize networking links. Now, they are working to pave the way for constructing the first quantum internet. They used photons to reach up to one kilometer macroscopic distance of quantum information link. They also show that this type of link is safe because the entanglement is invisible to intermediate parties, and the information is safe against eavesdropping.

We could now entangle electrons in additional quantum nodes such that we can extend the number of networking links towards a first real quantum network. Scientifically, a whole new world opens up. In five years we will connect four Dutch cities in a rudimentary quantum network.
– Ronald Hanson, The research group leader

This video demonstrates the new method and how it works:

The research paper was published in Science magazine, you can read it for more information.

Sources: TUDelft, elektor.