DC-DC converter starts up and operates from a single photocell

by Marian Stofka @ www.edn.com:

The bq25504 from Texas Instruments is a good candidate to become a milestone on the road to micro-power management and energy harvesting. A prominent feature of this IC is its ability to start up at a supply voltage as low as 330 mV typically, and 450 mV guaranteed. With an SMD inductor and a few capacitors and resistors, it forms a dc-dc converter with a high power efficiency that is unprecedented, especially in the ultralow-power region.

DC-DC converter starts up and operates from a single photocell – [Link]

Triaxis magnetic position sensor IC is ASIL-ready

Melexis’ next-generation monolithic magnetic sensor family, consisting of the MLX90371 and MLX90372, provides robust absolute position sensing for various applications. By Julien Happich @ eenewseurope.com:

Both devices consist of a Triaxis Hall magnetic front end, an analog to digital signal conditioner, a DSP for advanced signal processing and an output stage driver. Due to the Integrated Magneto Concentrator (IMC) they are sensitive to magnetic flux in three planes (X, Y & Z). This facilitates the decoding of the absolute rotary or linear position of any moving magnet, enabling the design of non-contact position sensors. The MLX90371 offers analog or PWM output while the MLX90372 offers SENT (SAE J2716 rev Apr 2016) or PWM output.

Triaxis magnetic position sensor IC is ASIL-ready – [Link]

Upgrade your Industrial Design with Broadcom Parts

Optocouplers – Industrial Fiber – Encoders

New Packages/ More Features/ Better Performance

Get the benefit of enhanced system design through the newest features at the same or lower price with a longer-term assurance of supply.

ACPL-352JThis 5A gate drive optocoupler is a device with integrated fail-safe IGBT and MOSFET diagnostics, protection and fault reporting.

ACPL-C799 is a 1-bit, second-order sigma-delta (Σ-Δ) modular that converts an analog input into a high-speed data stream with galvanic isolation based on optical coupling technology.

AFBR-57E6APZ-HTLow Power 125MBd SFP Transceiver for Fast Ethernet & FDDI (-40°C to +95°C Temperature).

AFBR-59E4APZ-HTThe AFBR-59E4APZ-HT is a new power-saving Small Form Factor transceiver that gives the system designer a product to implement a range of solutions for multimode fiber Fast Ethernet.

AEDR-8700 SeriesThe Broadcom AEDR-871x is a 3-channel reflective optical encoder device providing dual channel quadrature digital outputs and an index channel digital output.

EBV & Broadcom @ PCIM 2018

MP3 player using Arduino and DFPlayer mini

Hi guys, welcome to this tutorial. Today, we will build an mp3 player using an Arduino and the DFPlayer mini MP3 module.

The DFplayer mini is a small, low-cost mp3 module with a simplified audio output that can be connected directly to a speaker or an earphone jack. The module can be used as a stand-alone module with attached battery, speaker, and push buttons or used in combination with a microcontroller or development board like the Arduino, enabled for RX/TX (Serial) communication, thus through simple serial commands we can play music and perform other functions like playing the next and previous song, shuffle, pause the song currently being played etc. The module comes with an SDcard slot and supports both FAT16, FAT32 file system.

MP3 player using Arduino and DFPlayer mini – [Link]

OpenEmbed Releases em3399 Rockchip RK3399 SoM plus an Evaluation Kit

The RK3399 processor from Rockchip has seen adoption in some boards in recent times. The Rockchip RK3399 processor has been deployed on boards like the Odroid-N1 board, Firefly’s Firefly-RK3399, the Theobroma RK3399-Q7 SoM, and more recently the Shenzhen Xunlong’s Orange Pi RK3399.

The RK3399 is a low power, a high-performance processor for computing, personal mobile internet devices, and other smart device applications. Based on Big Little architecture, it integrates dual-core Cortex-A72 and quad-core Cortex-A53 with a separate NEON coprocessor and also a Mali T860 MP4 GPU all in one single package. It is the processor to beat and due to its display capabilities has made it seen applications in TV Boxes especially in China.

em3399 SoM

If you are still on the lookout for a system-on-module based on Rockchip RK3399, then another SoM to put for consideration is the OpenEmbed em3399. OpenEmbed has launched their first system-on-module referred to as the em3399 SoM board and even comes with an optional “emPAC-RK3399-EVB” evaluation board.

The em3399 SoM supports 2GB to 4GB DDR3L RAM and 16GB to 128GB eMMC 5.1. It provides support for HDMI 2.0, DisplayPort 1.2, MIPI-DSI (dual-channel) and eDP 1.3 display interfaces. It comes with a 2x MIPI-CSI camera interface, Gigabit Ethernet, USB 3.0, USB type C, USB 2.0, SPi, i2C, GPIO and several others.

The following are some of the specifications of the OpenEmbed em3399:

  • SoC – Rockchip RK3399 hexa-core processor with 2x Cortex-A72 cores, 4x Cortex-A53 cores, and an Arm Mali-T860MP4 GPU
  • System Memory –  2GB or 4GB DDR3L RAM
  • Storage – 16GB to 128GB eMMC 5.1 flash
  • Connectivity – Gigabit Ethernet transceiver (Atheros AR8033)
  • Power Management – Rockchip RK808D PMIC
  • 2x 120-pin board-to-board connectors (0.8mm pitch)
    • Camera – 2x MIPI-CSI (up to 13MP or dual 8MP); VOP (up to 5MP)
    • Audio – S/PDIF output, 8-channel I2S, HDMI and DP
    • Connectivity – Gigabit Ethernet
    • USB – 2x USB 3.0 host ports or 2x USB type C, 2x USB 2.0 host
    • 1x PCI-e x1
    • 5x SPI, 8x I2C, 100+ GPIOs
  •  Display:
    • HDMI 2.0 port with audio for up to 4K @ 60Hz
    • DisplayPort 1.2 with audio for up to 4K @ 60Hz
    • MIPI-DSI (dual-channel) at up to 2560×1600 @ 60 Hz
    • eDP 1.3 (4-lane)
  • Dimensions – 84 x 55 mm
emPAC-RK3399-EVB development board

The emPAC-RK3399-EVB evaluation board has the same footprint as the em3399 SoM and stacks on top of the module via a dual 120-pin connector. The em3399 SoM is layered between the carrier board on top and also a heatsink on the bottom.

The emPAC-RK3399-EVB development board extends the em3399 with single a Gigabyte Ethernet port, USB 3.0, and USB Type-C ports, as well as dual USB 2.0 ports. It also extends out the HDMI 2.0 port, an audio jack, and MIPI-CSI and eDP connectors. A Wireless WiFi/Bluetooth module is available, and 20 GPIO pins have been extended out as well.

The following are the specification of the emPAC-RK3399-EVB:

  • 2x 120-pin board-to-board connectors for em3399 CPU module
  • Display – HDMI 2.0a port, eDP connector, DisplayPort via USB type C port (TBC)
  • Audio – Via HDMI, 3.5mm audio jack (mic + stereo audio)
  • Camera – 1x CSI connector
  • Connectivity – Gigabit Ethernet, WiFi & Bluetooth module
  • USB – 2x USB 2.0 ports, 1x USB 3.0 port, 1x USB type C port
  • Expansion – 20-pin GPIO/Debug header with GPIOs, UART, 3.3V, 3.3V, 1.8V, GND
  • Misc – Power, Recovery and reset buttons; 5V power LED; 2-pin RTC battery header
  • Power Supply – 12V DC via power barrel jack
  • Dimensions – 84 x 55 mm

The company provides support for Android 7.1 and a Linux distribution with an Ubuntu Core still under development. You can purchase the SoM and the evaluation board on the OpenEmbed’s Taobao page for respectively 650 CNY ($102.50) or 899 CNY (~$142 US) for the 2GB/16GB configuration and 950 CNY ($151) or 1,199 CNY ($189) or for the 4GB/32GB models.

Arduino FM Radio project with a Nokia 5110 display and TEA5767 module

Our friends on educ8s.tv uploaded a new version of their FM Radio on breadboard based on TEA5767 module.

I have built a new, improved version of the FM radio project, which resolves the issues we had in the previous version of the project. The sound quality the project now offers is much better, and it has some new features as well. But first, let’s hear it play a YouTube safe song I am broadcasting using this small FM transmitter.

Arduino FM Radio project with a Nokia 5110 display and TEA5767 module – [Link]

DIY 200KHz Oscilloscope

Check out this DIY 200Khz oscilloscope sell on Tindie.com

If you’d rather spend even less money—but more time—then there are DIY kits that cost even less. One example is the DSO Shell Oscilloscope kit, listed for around $35. The device features a 12-bit sampling resolution, and a maximum bandwidth of 200KHz. It also has a rotary encoder for adjustments, and as the name implies, a nice housing to protect the instrument’s insides.

DIY 200KHz Oscilloscope – [Link]

$6 Maker UNO: Simplifying Arduino for Education

Simplified Arduino board targets Education. The project is live at kickstarter and has 22 days to go.

Students can skip the hassle of constructing the basic electronic circuit which is boring and time consuming. Although it is equally important for them to learn about basic electronics, it can always come later after they have experienced how easy it is to create awesome project. Start with fun and excitement. Start coding right away and see your board lights up and plays melody with the press of a button.

With the conventional Arduino boards, students also face another common problem – difficulty in troubleshooting their circuit. This is because when it doesn’t work, we do not know whether the problem is due to wire connection or coding.

$6 Maker UNO: Simplifying Arduino for Education – [Link]

Air Quality Analyzer

This is a project that analyses home air quality and records the values in a SD card.

The quality of the air that we breathe, is very important to our health. This device analyses the air quality inside our homes, and records the values in a SD card. By analyzing the stored values, we know how the evolution of the parameters thru time was.

I will use temperature, humidity and air quality sensors that are cheap enough to use in this kind of project, without sacrificing too much the precision. The main idea behind this project is to know if the air is breathable or not.

Air Quality Analyzer – [Link]

Google Bristlecone, The Race To Quantum Supremacy

On Monday, March 05, 2018, research scientists from the Google Quantum Al lab whose goal is to build a quantum computer that can be used to solve real-world problems, presented their latest quantum processor called Bristlecone at the annual American Physical Society meeting in Los Angeles.

Qubits or quantum bits are merely the quantum analogue of classical binary bits. Two of the most critical challenges researchers face in their journey to achieve quantum supremacies are error rules and subsequent scalability, this is because qubits are unstable and can be unfavorably affected by noise and can only maintain one state for less for one hundred of microseconds.

Researchers from Google have calculated that a system with 49 quantum bits, a circuit depth exceeding 40 and a two-qubit error below 0.5 percent can “comfortably demonstrate” quantum supremacy. Quantum supremacy is the point where quantum computers can run certain algorithms faster than a classical computer ever could. This has been the dream of many major tech startups and companies including Microsoft, IBM, and Intel.

Bristlecone is Google’s newest quantum processor

Every Bristlecone chip has 72 qubits which might significantly reduce the error rates associated with qubits; however, Google believes quantum computing is not all about qubits. The research team further backed this belief with what they wrote in a blog post:

Operating a device such as a Bristlecone at low system error requires harmony between a full stack of technology ranging from software and control electronics to the processor itself.

The guiding design principle for Bristlecone is to preserve the underlying physics of Google’s previous 9-qubit linear array technology which demonstrated low error rates for readout single-qubit gates to 0.1 percent and most importantly two-qubit gates to 0.6 percent as its best result. This device uses the same scheme for coupling, control, and readout, but is now scaled to a square array of 72 qubits. Therefore they chose a device of moderate size to be able to demonstrate quantum supremacy in the future, first investigate and secondly order error-correction using the surface code to facilitate quantum algorithm development on actual hardware (quantum computers).

Right now, Bristlecone has crowned Google – King of Quantum Computing, a title which previously belonged to IBM because of their 50 qubits chip. However Bristlecone did not just crown Google, it also shortened the race for quantum supremacy as we know it, which Google is “cautiously optimistic” about winning. Despite Google leading the race in Quantum Computing, the ultimate goal of Quantum Supremacy is still far off and might not be surprised if companies like IBM pull something up in the near future.