1.2V-32V @3A Variable Switching Regulator using LM317

The circuit presented here is based on LM317. Generally, LM317 is known as a linear regulator IC, but here the circuit operates as a switching regulator. This circuit operates by transferring energy
from the input to the output by using a solid state switch. Power Efficiency of a switching regulator is much higher than the linear regulators. The input voltage for this circuit is 8V-35V and it can produce the output of 1.8V to 32V, that can be varied by using potentiometer R3.

Features

  • Input(V): 8VDC to 35VDC
  • Output(V): 1.8VDC to 32VDC
  • Output load: 3A
  • PCB:68mm X 50mm

1.2V-32V @3A Variable Switching Regulator using LM317 – [Link]

Better current with spin electronics

by Clemens Valens @ elektormagazine.com

The ongoing miniaturisation of electronics is expected to reach its limits in the near future. One of the limitations is the size of electrons that are needed in electronic circuits to transport charge from one place to the other, what we usually call ‘current’. To work around this problem a team of scientists from Munich and Kyoto proposes a way to make current “better”, by using the electron’s spin instead of its charge. Enter spin electronics.

Better current with spin electronics – [Link]

FONA808 USB Interface

Jesus @ jechavarria.com tipped us with his latest project. He writes:

For several months I’m working with FONA808 modules from Adafruit to make a portable, web-based locating system. This modules are based on the SIM808 module from SIMCOM manufacturer, and integrates both GSM and GPS transceivers in one 24x24mm package.  The Adafruit board includes this module and also some electronics for choosing voltage levels, battery connection and charger. Because I need to test and programming some of this modules, I decide to make an specific PCB for it, allowing the programming and debugging via PC, wich is more comfortable that use a microcontroller for all these tasks.

FONA808 USB Interface – [Link]

Hack Your Car With Macchina M2

Car hacking applications have been growing during the last few years, making it faster and cheaper to get into automotive tinkering. A new device was launched recently on kickstarter called M2 by Macchina.

M2 is an open-source, versatile development platform which can be wired under the hood for a more permanent installation or plugged into the OBD2 port, enabling you to do virtually anything with your vehicle’s software.

It is a tiny device (56.4mm x 40.6mm x 15.7mm) that is compact, modular, wirelessly connectable, and based on the popular Arduino Due. It consists of a processor board with a SAM3X8E Cortex-M3 MCU, a USB port, some LEDs, an SD card slot, and built-in EEPROM, as well as an interface board with two channels of CAN, two channels of LIN/K-LINE, a J1850 VPW/PWM, and even a single-wire (GMLAN) interface.

M2 is universal as its libraries and protocols are compatible with any car that isn’t older than Google. Macchina also aims to make the M2 compatible with as many existing open source software packages as possible.It is already compatible with SavvyCAN, CanCAT, MetaSploit, and CANtact.

Working with M2 is easy for Arduino users. Here is a summary of the steps needed to duplicate our shift light project on a CANbus-equipped manual transmission car that also illustrates the basic workflow when car hacking with M2:

  • Step 1: Download the latest Arduino IDE and install the Macchina boards add-on; test everything is working by blinking an LED.
  • Step 2: Download and install one of several open source “Sniffer” applications to your computer and upload the corresponding “sketch” to M2.
  • Step 3: Use the “Sniffer” application to identify the piece of data you are looking to use. In this case, engine RPM
  • Step 4: Write a “Sketch” to watch for RPM data and light up some LEDs proportionally and flash when it is time to shift.

You can also check this video to see an example of simple car hacking:

Macchina has partnered with Arduino, Digi and Digi-Key to develop M2, and it believes that its highly-adaptable hardware will most benefit hot rodders, mechanics, students, security researchers, and entrepreneurs by providing them access to the inner workings of their rides.

As it is an open source project, you can get its 3D files, schematics, BOM, and source files on the github repository. M2 will be available for $79 and it may cost about $110 if you build it yourself. Visit Macchina’s Kickstarter page to learn more or pre-order yours today. You can also check out Hackaday’s review about M2.

Macchina M2 tutorial introduction:

Installing The Micronucleus Bootloader To An ATtiny Via Arduino

In order to be able to upload Arduino sketches directly to the ATtiny84 over USB without the need to use a programming device, Shawn Hymel, an electrical engineer at Sparkfun Electronics, had published a guide showing how to install the micronucleus bootloader, which supports virtual USB (V-USB), onto an ATtiny84 using Arduino.

The Atmel AVR ATtiny84 is a $3 tiny 8-bit processor with 8K of program space, 12 I/O lines, and 8-channel 10 bit ADC. It will run up to 20MHz with an external crystal and can be programmed in circuit.

To start following the tutorial, you will need these parts:

Micronucleus is a bootloader designed for AVR ATtiny microcontrollers with a minimal usb interface, cross platform libusb-based program upload tool, and a strong emphasis on bootloader compactness. It has a built in V-USB so that you can send compiled firmware over a virtual USB connection.

The process will use an Arduino as a programmer by loading an Arduino ISP to install the micronucleus bootloader on the ATtiny84. The next step is allowing USB programming on ATtiny84 by manually change fuses, then creating a board definition for ATtiny84 and installing any necessary USB drivers.

The hardware components should be connected as shown in the above circuit. At first you have to remove the capacitor and connect a FTDI breakout to the Arduino Pro Mini and upload the Arduino ISP firmware.

Before installing Micronucleus, a 10μF capacitor is added between the RESET and GND pins of the Arduino. It will prevent the Arduino from entering bootloader mode so that it will pass the compiled firmware to the connected ATtiny rather than trying to program itself.

AVRDUDE is used then to change the ATtiny fuses and set them as the following:

  • No clock divider
  • Brown-out detection at 2.7V (not necessary, but useful if running off battery)
  • Self-programming

This tutorial should also work with ATtiny85, ATtiny841, and ATtiny167. You can find the detailed steps with a blink example on the main tutorial page.

PIC16F15386, A New PIC Family Announced By Microchip

Microchip, the well-known manufacturer of microcontrollers and semiconductors, announced this week a new family of 8-bit PIC microcontrollers, the ‘PIC16F15386’.

The new PIC16F15386 family features a 8 MIPS CPU speed, with 2KB RAM and up to 28KB flash memory offered in 8 to 48-pin packages. It also has a dual UART, dual SPI and dual I²C interfaces, one 8-bit timer and two 16-bit timers.

PIC16F15386 Features

  • Enhanced Mid-range Core with 49 Instruction, 16 Stack Levels
  • Flash Program Memory with self read/write capability
  • eXtreme Low Power (XLP)
  • IDLE and DOZE low power modes
  • Peripheral Module Disable (PMD)
  • Peripheral Pin Select (PPS)
  • 4x 10-bit PWMs
  • 2x Capture, Compare, PWM (CCP)
  • Complementary Waveform Generator (CWG)
  • Numerically Controlled Oscillator (NCO)
  • 4x Configurable Logic Controller (CLC)
  • 43 Channels 10-bit ADC with Voltage Reference
  • 5-bit Digital to Analog Converter (DAC)
  • 2x Comparators
  • 1x 8-bit Timers (TMR0/TMR2)
  • 2x 16-bit Timer (TMR1)
  • Window Watchdog Timer (WWDT)
  • Enhanced Power-On/Off-Reset
  • Low-Power Brown-Out Reset (LPBOR)
  • Programmable Brown-Out Reset (BOR)
  • In Circuit Serial Programming (ICSP)
  • PIC16LF15386 (1.8V – 3.6V)
  • PIC16F15386 (2.3V – 5.5V)

PIC16F15386 family comes with essential peripherals like Intelligent Analog, Core Independent Peripherals (CIPs) and communication combined with eXtreme Low-Power (XLP) for a wide range of low-power applications. The family features PWMs, multiple communication, temperature sensor and memory features like Memory Access Partition (MAP) and Device Information Area (DIA).

We’ve always offered a diverse portfolio of products with large market appeal,” said Steve Drehobl, vice president of Microchip’s 8-bit MCU division. “With the combination of the most requested features and peripherals by our large base of PIC MCU users, the flexibility in memory size and package options and the availability of MPLAB Xpress with MCC, we expect the PIC16F15386 family to be popular with experienced and first-time PIC MCU designers.

The PIC16F15386 is also compatible with the MPLAB Xpress IDE and the MPLAB Code Configurator, a graphical programming environment. The family includes 13 unique products that are offered in various package options including PDIP, SOIC, DFN, UDFN, UQFN and SSOP.

All products are available now for sampling and in volume production. Volume pricing starts at $0.33 for the product family.

gen4 3.2”, The New Intelligent Display Modules

4D Systems, the manufacturer of intelligent graphics solutions, has announced a new 3.2” smart display module as part of the ‘ gen4 ’ series, which had been designed specifically for ease of integration and use, with careful consideration for space requirements and functionality.

These modules features a 3.2” color TFT display with options for Cover Lens Bezel (CLB), Resistive Touch and Capacitive Touch. The display is capable of Touch Detection, microSD memory Storage, GPIO and Communications, along with multiple millisecond resolution timers, and Audio Generation. gen4 modules have 30 pin ZIF socket for a 30 pin FPC cable, for easy and simple connection to an application or a motherboard.

The gen4 display modules are powered by the 4D Systems Diablo16 graphics processor that offers an array of functionality and options for any Designer / Integrator / User. Diablo16 is a custom embedded 4DGL graphics controller designed to interface with many popular OLED and LCD display panels.

gen4 display modules features:

  • Powerful 3.2” Intelligent LCD-TFT display module powered by DIABLO16.
  • 240 x 320 Resolution, RGB 65K true to life colours, TFT Screen with integrated 4-wire Resistive Touch Panel (on DT model only).
  • 6 banks of 32750 bytes of Flash memory for User Application Code and Data.
  • 32Kb of SRAM purely for the User.
  • 16 General Purpose I/O pins for user interfacing, which include 4 configurable Analog Inputs.
  • The GPIO is variously configurable for alternative functions such as:
    • 3x I2C channels available.
    • 1x SPI dedicated for SD Card and 3x configurable SPI channels available.
    • 1x dedicated and 3x configurable TTL Serial comm ports available.
    • Up to 6 GPIO can be used as Pin Counters.
    • Up to 6 GPIO for PWM (simple and Servo).
    • Up to 10 GPIO for Pulse Output.
    • Up to 14 GPIO can be configured for Quadrature Encoder Inputs (2 channels).
  • 30pin FPC connection, for all signals, power, communications, GPIO and programming.
  • On-board latch type micro-SD memory card connector for multimedia storage and data logging purposes.
  • DOS compatible file access (FAT16 format) as well as low level access to card memory.
  • Dedicated PWM Audio pin driven by WAV files from micro-SD card, and for sound generation, for an external amplifier.
  • Display full colour images, animations, icons and video clips.
  • Supports all available Windows fonts.
  • 4.0V to 5.5V range operation (single supply).
  • Module dimensions:
    • (D): 95.7 x 57.1 x 6.3mm.
    • (D-CLB): 98.8 x 72.6 x 7.4mm.
    • (DT): 95.7 x 57.1 x 7.5mm.
    • (DCT-CLB): 98.8 x 72.6 x 8.3mm.
  • 4x mounting tabs with 3.2mm holes for mechanical mounting using M3 screws.
  • RoHS and REACH compliant.
  • CE Compliant – please ask for CE declarations from our Support Team.

The intelligent gen4 displays can be programmed via Workshop4 IDE. It provides an integrated software development platform for all of the 4D family of processors and modules. The IDE combines the Editor, Compiler, Linker and Downloader to develop complete 4DGL application code.

gen4 modules are available in 4 models:

  • gen4-uLCD-32D (non Touch, without Cover Lens Bezel)
  • gen4-uLCD-32DT (Resistive Touch, without Cover Lens Bezel)
  • gen4-uLCD-32D-CLB (non Touch, Cover Lens Bezel)
  • gen4-uLCD-32DCT-CLB (Capacitive Touch, with Cover Lens Bezel)

The module is available on the official website with a range of $55 to $79 including interface board, 150mm FFC cable, and a quick start guide. Starter kits are also available from $75 to $99.

Measuring seismic activity using ProtoCentral OpenPressure

Seismic activity or “Vibrations of the earth” is measured using ProtoCentral’s OpenPressure 24-bit DAQ System.

A geophone is a magnetic device used to measure the Earth’s normal vibrations (some abnormal during events such as earthquakes). These movements are also present when there is a small explosion (commonly used for mining and exploration purposes).

Measuring seismic activity using ProtoCentral OpenPressure – [Link]

iSwitchPi Adds an Intelligent Power Switch to Your Raspberry Pi

by Peter Boxler :

Native Raspberry Pi does not have an On/Off switch and there is no easy way to shutdown the Pi while keeping the filesystem intact. This Intelligent Power Switch allows just that: Power-On the Pi by pressing a pushbutton and also properly Power-Off the Pi with another press on the same button. The intelligence is provided by a program running in an AVR MCU ATtiny44. This C-program implements a Finite State Machine in the MCU. A small Python script is running in the Pi itself. Just one GPIO-Pin is used for two-way communication. In addition, a variable frequency square wave is available for externally interrupting the Pi.

iSwitchPi Adds an Intelligent Power Switch to Your Raspberry Pi – [Link]

Teardown and analysis of microwave (26.5GHz) electro-mechanical step attenuators

Teardown and analysis of microwave (26.5GHz) electro-mechanical step attenuators from The Signal Path:

In this short episode Shahriar takes a close look at a pair of Hewlett Packard microwave electro-mechanical step attenuators operating up to 26.5GHz. Mechanical attenuators offer excellent repeatability, low insertion loss and nearly limitless linearity. The teardown reveals that the construction of both modules is very similar on the microwave path. In fact, the lower-frequency model still uses the same attenuator components. The newer model employs electronic control circuity while the older generation attenuator uses purely mechanically controlled DC path. Both models use a solenoid style actuators for step attenuation control.

Teardown and analysis of microwave (26.5GHz) electro-mechanical step attenuators – [Link]