Hack Your Car With Macchina M2

Car hacking applications have been growing during the last few years, making it faster and cheaper to get into automotive tinkering. A new device was launched recently on kickstarter called M2 by Macchina.

M2 is an open-source, versatile development platform which can be wired under the hood for a more permanent installation or plugged into the OBD2 port, enabling you to do virtually anything with your vehicle’s software.

It is a tiny device (56.4mm x 40.6mm x 15.7mm) that is compact, modular, wirelessly connectable, and based on the popular Arduino Due. It consists of a processor board with a SAM3X8E Cortex-M3 MCU, a USB port, some LEDs, an SD card slot, and built-in EEPROM, as well as an interface board with two channels of CAN, two channels of LIN/K-LINE, a J1850 VPW/PWM, and even a single-wire (GMLAN) interface.

M2 is universal as its libraries and protocols are compatible with any car that isn’t older than Google. Macchina also aims to make the M2 compatible with as many existing open source software packages as possible.It is already compatible with SavvyCAN, CanCAT, MetaSploit, and CANtact.

Working with M2 is easy for Arduino users. Here is a summary of the steps needed to duplicate our shift light project on a CANbus-equipped manual transmission car that also illustrates the basic workflow when car hacking with M2:

  • Step 1: Download the latest Arduino IDE and install the Macchina boards add-on; test everything is working by blinking an LED.
  • Step 2: Download and install one of several open source “Sniffer” applications to your computer and upload the corresponding “sketch” to M2.
  • Step 3: Use the “Sniffer” application to identify the piece of data you are looking to use. In this case, engine RPM
  • Step 4: Write a “Sketch” to watch for RPM data and light up some LEDs proportionally and flash when it is time to shift.

You can also check this video to see an example of simple car hacking:

Macchina has partnered with Arduino, Digi and Digi-Key to develop M2, and it believes that its highly-adaptable hardware will most benefit hot rodders, mechanics, students, security researchers, and entrepreneurs by providing them access to the inner workings of their rides.

As it is an open source project, you can get its 3D files, schematics, BOM, and source files on the github repository. M2 will be available for $79 and it may cost about $110 if you build it yourself. Visit Macchina’s Kickstarter page to learn more or pre-order yours today. You can also check out Hackaday’s review about M2.

Macchina M2 tutorial introduction:

Installing The Micronucleus Bootloader To An ATtiny Via Arduino

In order to be able to upload Arduino sketches directly to the ATtiny84 over USB without the need to use a programming device, Shawn Hymel, an electrical engineer at Sparkfun Electronics, had published a guide showing how to install the micronucleus bootloader, which supports virtual USB (V-USB), onto an ATtiny84 using Arduino.

The Atmel AVR ATtiny84 is a $3 tiny 8-bit processor with 8K of program space, 12 I/O lines, and 8-channel 10 bit ADC. It will run up to 20MHz with an external crystal and can be programmed in circuit.

To start following the tutorial, you will need these parts:

Micronucleus is a bootloader designed for AVR ATtiny microcontrollers with a minimal usb interface, cross platform libusb-based program upload tool, and a strong emphasis on bootloader compactness. It has a built in V-USB so that you can send compiled firmware over a virtual USB connection.

The process will use an Arduino as a programmer by loading an Arduino ISP to install the micronucleus bootloader on the ATtiny84. The next step is allowing USB programming on ATtiny84 by manually change fuses, then creating a board definition for ATtiny84 and installing any necessary USB drivers.

The hardware components should be connected as shown in the above circuit. At first you have to remove the capacitor and connect a FTDI breakout to the Arduino Pro Mini and upload the Arduino ISP firmware.

Before installing Micronucleus, a 10μF capacitor is added between the RESET and GND pins of the Arduino. It will prevent the Arduino from entering bootloader mode so that it will pass the compiled firmware to the connected ATtiny rather than trying to program itself.

AVRDUDE is used then to change the ATtiny fuses and set them as the following:

  • No clock divider
  • Brown-out detection at 2.7V (not necessary, but useful if running off battery)
  • Self-programming

This tutorial should also work with ATtiny85, ATtiny841, and ATtiny167. You can find the detailed steps with a blink example on the main tutorial page.

PIC16F15386, A New PIC Family Announced By Microchip

Microchip, the well-known manufacturer of microcontrollers and semiconductors, announced this week a new family of 8-bit PIC microcontrollers, the ‘PIC16F15386’.

The new PIC16F15386 family features a 8 MIPS CPU speed, with 2KB RAM and up to 28KB flash memory offered in 8 to 48-pin packages. It also has a dual UART, dual SPI and dual I²C interfaces, one 8-bit timer and two 16-bit timers.

PIC16F15386 Features

  • Enhanced Mid-range Core with 49 Instruction, 16 Stack Levels
  • Flash Program Memory with self read/write capability
  • eXtreme Low Power (XLP)
  • IDLE and DOZE low power modes
  • Peripheral Module Disable (PMD)
  • Peripheral Pin Select (PPS)
  • 4x 10-bit PWMs
  • 2x Capture, Compare, PWM (CCP)
  • Complementary Waveform Generator (CWG)
  • Numerically Controlled Oscillator (NCO)
  • 4x Configurable Logic Controller (CLC)
  • 43 Channels 10-bit ADC with Voltage Reference
  • 5-bit Digital to Analog Converter (DAC)
  • 2x Comparators
  • 1x 8-bit Timers (TMR0/TMR2)
  • 2x 16-bit Timer (TMR1)
  • Window Watchdog Timer (WWDT)
  • Enhanced Power-On/Off-Reset
  • Low-Power Brown-Out Reset (LPBOR)
  • Programmable Brown-Out Reset (BOR)
  • In Circuit Serial Programming (ICSP)
  • PIC16LF15386 (1.8V – 3.6V)
  • PIC16F15386 (2.3V – 5.5V)

PIC16F15386 family comes with essential peripherals like Intelligent Analog, Core Independent Peripherals (CIPs) and communication combined with eXtreme Low-Power (XLP) for a wide range of low-power applications. The family features PWMs, multiple communication, temperature sensor and memory features like Memory Access Partition (MAP) and Device Information Area (DIA).

We’ve always offered a diverse portfolio of products with large market appeal,” said Steve Drehobl, vice president of Microchip’s 8-bit MCU division. “With the combination of the most requested features and peripherals by our large base of PIC MCU users, the flexibility in memory size and package options and the availability of MPLAB Xpress with MCC, we expect the PIC16F15386 family to be popular with experienced and first-time PIC MCU designers.

The PIC16F15386 is also compatible with the MPLAB Xpress IDE and the MPLAB Code Configurator, a graphical programming environment. The family includes 13 unique products that are offered in various package options including PDIP, SOIC, DFN, UDFN, UQFN and SSOP.

All products are available now for sampling and in volume production. Volume pricing starts at $0.33 for the product family.

gen4 3.2”, The New Intelligent Display Modules

4D Systems, the manufacturer of intelligent graphics solutions, has announced a new 3.2” smart display module as part of the ‘ gen4 ’ series, which had been designed specifically for ease of integration and use, with careful consideration for space requirements and functionality.

These modules features a 3.2” color TFT display with options for Cover Lens Bezel (CLB), Resistive Touch and Capacitive Touch. The display is capable of Touch Detection, microSD memory Storage, GPIO and Communications, along with multiple millisecond resolution timers, and Audio Generation. gen4 modules have 30 pin ZIF socket for a 30 pin FPC cable, for easy and simple connection to an application or a motherboard.

The gen4 display modules are powered by the 4D Systems Diablo16 graphics processor that offers an array of functionality and options for any Designer / Integrator / User. Diablo16 is a custom embedded 4DGL graphics controller designed to interface with many popular OLED and LCD display panels.

gen4 display modules features:

  • Powerful 3.2” Intelligent LCD-TFT display module powered by DIABLO16.
  • 240 x 320 Resolution, RGB 65K true to life colours, TFT Screen with integrated 4-wire Resistive Touch Panel (on DT model only).
  • 6 banks of 32750 bytes of Flash memory for User Application Code and Data.
  • 32Kb of SRAM purely for the User.
  • 16 General Purpose I/O pins for user interfacing, which include 4 configurable Analog Inputs.
  • The GPIO is variously configurable for alternative functions such as:
    • 3x I2C channels available.
    • 1x SPI dedicated for SD Card and 3x configurable SPI channels available.
    • 1x dedicated and 3x configurable TTL Serial comm ports available.
    • Up to 6 GPIO can be used as Pin Counters.
    • Up to 6 GPIO for PWM (simple and Servo).
    • Up to 10 GPIO for Pulse Output.
    • Up to 14 GPIO can be configured for Quadrature Encoder Inputs (2 channels).
  • 30pin FPC connection, for all signals, power, communications, GPIO and programming.
  • On-board latch type micro-SD memory card connector for multimedia storage and data logging purposes.
  • DOS compatible file access (FAT16 format) as well as low level access to card memory.
  • Dedicated PWM Audio pin driven by WAV files from micro-SD card, and for sound generation, for an external amplifier.
  • Display full colour images, animations, icons and video clips.
  • Supports all available Windows fonts.
  • 4.0V to 5.5V range operation (single supply).
  • Module dimensions:
    • (D): 95.7 x 57.1 x 6.3mm.
    • (D-CLB): 98.8 x 72.6 x 7.4mm.
    • (DT): 95.7 x 57.1 x 7.5mm.
    • (DCT-CLB): 98.8 x 72.6 x 8.3mm.
  • 4x mounting tabs with 3.2mm holes for mechanical mounting using M3 screws.
  • RoHS and REACH compliant.
  • CE Compliant – please ask for CE declarations from our Support Team.

The intelligent gen4 displays can be programmed via Workshop4 IDE. It provides an integrated software development platform for all of the 4D family of processors and modules. The IDE combines the Editor, Compiler, Linker and Downloader to develop complete 4DGL application code.

gen4 modules are available in 4 models:

  • gen4-uLCD-32D (non Touch, without Cover Lens Bezel)
  • gen4-uLCD-32DT (Resistive Touch, without Cover Lens Bezel)
  • gen4-uLCD-32D-CLB (non Touch, Cover Lens Bezel)
  • gen4-uLCD-32DCT-CLB (Capacitive Touch, with Cover Lens Bezel)

The module is available on the official website with a range of $55 to $79 including interface board, 150mm FFC cable, and a quick start guide. Starter kits are also available from $75 to $99.

Build Your Next IoT Device With GOBLIN 2

Designed for industry, makers, and visionary students, Verse Technology presents GOBLIN 2, its new card with the best of Arduino technology.

GOBLIN 2 is an IoT development board that unlocks the potential of the Internet of Things. It has been built based on the high-performance 16MHz ATmega328P microcontroller with a built-in SIM5320A connectivity module, and high accuracy 16-channel GPS.

The board contains 10 digital I/O ports half of them work as PWM, and 6 analog pins. It also integrates connectivity for each RS-485 protocol and voltage outputs of 24V, 5V and 3.3V that are ideal for industrial sensors or sensors with analog/digital signal.

The SIM5320A incorporates a dual-band HSDPA/WCDMA and Quad-Band GSM/GPRS/EDGE which gives GOBLIN 2 the connectivity with web servers through any cellular web. It also includes inlets/outlets to connect peripherals like keyboards, microphones, speakers, and thus exploit better the cellular network.

GOBLIN 2 Introduction video:

Technical specifications of GOBLIN 2:

  • Dimensions: 65.5mm x 82.2mm
  • Microcontroller: ATmega328P
  • CPU Speed: 16 MHz
  • Memory: 1KB EEPROM, 32KB Flash, 2KB SRAM
  • External Power Input: Micro USB 2.0 5V, Solar Panel 5V up to 200mA, 3.7V battery charger.
  • Power Output: 3.3V 300mA, 5V 3A, 24V 500mA.
  • Ports:
    • 6 ADC input – 10 bits resolution
    • 10 digital in/out – 5 PWM
    • 1 Micro USB Up to 115.2k baud
  • Connectivity:
    • SIM5320A with Header USB 2.0 interface
    • Header to Keypad, microphone and speaker for SIM I/O
    • High accuracy 16 channel GPS
    • RS-485 protocol 10Mbps Up to 256 nodes on the bus

GOBLIN 2 is powered by Li-Po battery of 3.7V to 4.2V, which can be charged through a solar cell or a Micro-USB thanks to its built-in battery management module. With an integrated voltage converter, GOBLIN can offer three output voltages; 24V to industrial sensors, 5v to charges like servomotors or related sensors with that kind of supply voltage and 3.3v for communication devices such a RF, Wi-Fi, sensors and others.

The board’s microcontroller can be programmed with Arduino IDE or Atmel Studio via micro USB, which also can be used for direct communication with the SIM5320A from the PC for a SIMCOM “AT+” command interchange.

Some of GOBLIN 2 applications:
  • Monitoring of industrial sensors with an RS-485 protocol.
  • Telemetry.
  • Vehicle monitoring.
  • GPS systems.
  • Weather monitoring.
  • Alarm system.
  • Automation applications.
  • SMS Applications, calls.
  • Monitoring of medic variables.
  • Remotes controls.

GOBLIN 2 is now available for $134 on Verse Technology store. Their github repository and documentation page contains some example codes and projects. This video shows the GOBLIN 2 in action:

DS28EC20, A Serial 1-Wire 20Kb EEPROM

The American manufacturer of analog and mixed-signal integrated circuits, Maxim Integrated, has developed a new serial EEPROM memory that operates from single-contact 1-wire interface.

The DS28EC20 is a 20480-bit, 1-Wire® EEPROM organized as 80 memory pages of 256 bits each. An additional page is set aside for control functions. Data is written to a 32-byte scratchpad, verified, and then copied to the EEPROM memory.

The 1-Wire is a device communications bus system that provides low-speed data, signaling, and power over a single conductor. This technology uses only two wires; data and ground. It is similar in concept to I²C, but with lower data rates and longer range. It is typically used to communicate with small inexpensive devices such as digital thermometers and weather instruments.

DS28EC20 features:
  • 20480 Bits of Nonvolatile (NV) EEPROM Partitioned into Eighty 256-Bit Pages
  • Individual 8-Page Groups of Memory Pages (Blocks) can be Permanently Write Protected or Put in OTP EPROM-Emulation Mode (“Write to 0”)
  • Read and Write Access Highly Backward-Compatible to Legacy Devices (e.g., DS2433)
  • 256-Bit Scratchpad with Strict Read/Write Protocols Ensures Integrity of Data Transfer
  • 200k Write/Erase Cycle Endurance at +25°C
  • Unique Factory-Programmed 64-Bit Registration Number Ensures Error-Free Device Selection and Absolute Part Identity
  • Switchpoint Hysteresis and Filtering to Optimize Performance in the Presence of Noise
  • Communicates to Host at 15.4kbps or 90kbps Using 1-Wire Protocol
  • Low-Cost TO-92 Package
  • Operating Range: 5V ±5%, -40°C to +85°C
  • IEC 1000-4-2 Level 4 ESD Protection (8kV Contact, 15kV Air, Typical) for I/O Pin

Blocks of eight memory pages can be write-protected or put in EPROM-Emulation mode, where bits can only be changed from a 1 to a 0 state. The life-expectancy of the DS28EC20 is specified at more that 200 k erase/write cycles at 25 °C. The I/O pin has IEC 1000-4-2 Level 4 ESD protections (8 kV contact, 15 kV air).

Applications that can use the DS28EC20:
  • Card/Module Identification in Rack-Based Systems
  • Device Authentication
  • IEEE 1451.4 Sensors
  • Ink and Toner Cartridge ID
  • Medical and Industrial Sensor Identification/Calibration
  • PCB Identification
  • Smart Cable

Ordering DS28EC20 is available for about $1.7 per chip through Maxim website. You can also get design resources and technical documents of the chip.

HPS140MK2, The New Handheld Oscilloscope

Velleman Inc., a producer and a distributor of electronics, has produced a new handheld oscilloscope with the same power of its HPS140, but with smaller size and modern design.

HPS140MK2 is a 11.4 x 6.8 x 2.2 cm versatile component tester that fits in your pocket. This small oscilloscope features a real time 40 MS/s sampling rate with up to 10 MHz bandwidth and 0.1 mV sensitivity.

HPS140MK2 features:

  • 40 Mega samples/sec in real time
  • Bandwidth up to 10 MHz
  • Full auto range option
  • Sensitivity down to 0.1 mV
  • Signal markers for amplitude and time
  • Memory hold function
  • Direct audio power measurement

The device is powered by 4 AAA batteries. On the front panel you can find four buttons; menu, up, down, and hold. The display is used to menu options and received signal. On the top side you will find an on/off switch and a BNC input connector that can accept maximum input of 100Vp.On the bottom side there is an X10 probe test signal.

Specifications:

  • Bandwidth: up to 10 MHz (-3dB or -4dB at selected ranges)
  • Input range: 1 mV to 20 V / division in 14 steps
  • Input coupling: DC, AC and GND
  • Real-time sample rate up to 40 MS/s
  • AD resolution: 8 bits
  • Time base: 250 ns to 1 h per division
  • Auto set-up function (or manual)
  • Probe x10 readout option
  • Readouts: DC, AC + DC,True RMS, dBm, Vpp, Min-Max. (±2.5%)
  • Audio power measurement from 2 to 32 ohms
  • Hold & store function
  • Time and voltage markers readout
  • Max. 100 Vp AC + DC
  • Monochrome OLED
  • Power supply: 4 x 1.5 V AAA batteries (not incl.)
  • Operating time: up to 8 hours on quality Alkaline batteries
  • Dimensions: 114 x 68 x 22 mm
  • Weight: 166 gr
  • Current consumption: max. 150 mA

The product is available for $150 on Velleman store. Additional parts will be available soon including component tester ‘HPS141’ to receive all useful information about resistors, transistors, diodes and more, including their pin out identification, and the ‘HPSP1’ protective pouch.

RELATED POSTS

DIY Arduino-Based Desktop CNC Router

Inspired by machines like the Nomad 883 from Carbide3D, Carvey from Inventables and more, Thimo Voorwinden had come up with a new tutorial for building a desktop CNC router powered by Arduino.

This CNC budget is around €200 and you don’t need a workshop to build it up, basic tools will do. It is designed to be modular, Arduino powered, and with a tolerance of (±0,1 mm). It has Ø8 mm linear rods, M8 thread lead screw and uses NEMA 17 stepper motors and drv8825 drivers. Plus, 250 watt flexible shaft is needed to drive the spindle and it has a work area of 200 x 250 x 100 mm (x,y,z).

Here you are the Bill of Materials that Thimo made based on his research in German and Chinese web-shops:

The tools Thimo used to build this CNC are listed here:

  • Homemade router table
  • Old ‘cordless’ drill
  • Ø22 mm wood spade drill
  • A rusty collection of old metal drill bits
  • Hammer
  • Metal saw
  • File
  • Screw drivers
  • Clamps
  • Try square
  • A soldering iron

Thimo shared this experience as a 5 HD video tutorials on Youtube to explain all the steps he went through: setting X and Y axis, the frame, Z axis and spindle, electronics and a video where the CNC is in action while milling a jigsaw piece. He added two extra videos for foam milling and testing the plotting function. Check them out here:

“For about €200 I’m now capable to CNC machine wooden parts. Not at a high speed, or without any bumps along the way, but having this option is still great. I will definitely try to machine some gears, specific parts for projects and engrave signs with this in the future.”

For more information, a detailed guide, and some notes check the project’s page at Thimo website.

Make Your Own Laser Scanning Microscope

A laser scanning microscope (LSM) is an optical imaging technique for increasing optical resolution and contrast of micrographs. It permits a wide range of qualitative and quantitative measurements on difficult samples, including topography mapping, extended depth of focus, and 3D visualization.

A laser microscope works by shining a beam of light on a subject in an X-Y plane. The intensity of the reflected light is then detected by a photoresistor (LDR) and recorded. When the various points of light are combined, you get an image.

Venkes had built his own DIY laser scanning microscope with a DVD pick-up, an Arduino Uno, a laser, and a LDR. He had also published an A-Z tutorial about making a similar device.

The result image consists of 256×256 pixels with resolution of 200 nm, about 1300 time enlargement, and it will not cost you a lot because you may have most of the parts. However, the scanning process is a bit slow, it may need half an hour for one image, and it is not crispy sharp.

The parts needed for this DIT LSM are:

  • 2 lens/coil parts of a laser pick-up (DVD and/or CD)
  • a bit of PCB
  • a piece if UTP cable (approx 15cm)
  • An Arduino UNO
  • An LDR
  • 2 x 10uF capacitors
  • 1 x 220 Ohm resistor
  • 1 x 10k resistor
  • 1 x 10k pot
  • 1 x 200 Ohm trim potentiometer
  • 1 breadboard
  • 1 switch
  • 1 3,5 mm jack plug
  • 1 audio amplifier
  • 1 laser with a good collimating lens
  • 1 piece of glass, a quarter of a microscope object glass or so to act as a semipermeable mirror
  • The under part of a ballpoint casing to put the LDR in

For the software side, an Arduino sketch is used to steer the lens, to read the LDR values, and to send information to a Processing sketch which will receive the data and translate it into an image.

You can find more details of this project with the source files at the project’s Instructables page. This video shows the device in action:

Send Touch Over Distance With HEY Bracelet

HEY is an innovative bracelet that really makes you feel connected to a loved one. It uses a unique technology to send your touch as far as needed. It’s the first bracelet that mimics a real human touch, not by producing a mechanical vibration or buzzing sensation, but an actual gentle squeeze.

On Valentine’s Day the stylish piece of smart jewelry was launched on Kickstarter and within one hour it was already ‘trending’. Check the campaign video:

The bracelet incorporates advanced technology that communicates through Bluetooth with your smartphone. The ingenious design  ensures that a touch wouldn’t be sent accidentally. In order to send a message you should touch the bracelet in two places and it will be transferred directly to your phone and from there to the connected HEY bracelet anywhere in the world.

Via Bluetooth HEY is connected to an app on your smartphone. This app makes sure all your little squeezes reach the other bracelet directly. It also helps you pair the bracelets easily, fast and without any hassle. And last but not least it keeps track of your love stats. For instance the distance between you and your loved one or the last time you were together. If desired, these features can be turned off. In the future more features will be added to the app.

HEY is invented by Mark van Rossem. He looked at the current world of communication and saw that one thing was missing. And that thing was touch. People communicate through technology 24/7, but there is always a physical distance separating them. So Mark set himself the seemingly impossible goal to send touch at great distances and came up with the idea for HEY. Together with successful entrepreneur, David van Brakel, he gathered a team of creative and technical professionals that have all earned their credentials in their field of expertise. Together they want to build products that bring people closer.

“From a simple touch like squeezing someone’s hand, to hugging, social touch is important in the way we maintain healthy and happy social relationships with the people that we care about most.” – Gijs Huisman, who collaborated in developing bracelet, is an expert at the University of Twente in the field of Social Touch Technology and has been researching haptic technology (touch by tech) for five years now.

No need to worry a lot about the safety of the bracelet electronics since the design is weatherproof. With only 30 minutes of charging, you will be able to send touches for around 3 weeks!

HEY adds a completely new dimension to relationships and more haptic products will be developed in the near future. For more information and updates, check the official website and the Kickstarter campaign. 35 days are left to pre-order 2 HEY bracelets with the Kickstarter deal for €83 which is 30% of the retail price.