290Hz Narrowband Laser On Chip For Numeros Photonic Applications

Researchers from the MESA+ research institute at University of Twente have collaborated together with the provider company of the customized microsystem solutions “LioniX International” to achieve the lowest bandwidth tunable diode laser on a chip.

The newly-developed laser operates in the IR region at 1550 nm with an 81 nm tuning range, which means that users can choose the color of the laser themselves, within a broad range. The laser is an integrated InP-Si3N4 hybrid laser consists of two different photonic chips, optically connected to each other.

Photonics is a key technology that makes numerous other innovations possible. So that, scientists and researchers are making big efforts at this field including deployment of photons for transporting and processing data.

To make photonic chips function as efficient as possible, we need to be able to control the light signals. Which means that all transmitted light particles should have the same frequency and wavelength as possible. The university researchers have succeeded developing a tiny laser on a chip with a maximum bandwidth of just 290 Hertz.

Our signal is more than ten times more coherent – or clean – than any other laser on a chip.
~ Professor Klaus Boller, the research leader

This record laser will have countless applications especially in fiber optic communications that require high data rate. This applications includes 5G mobile networks, accurate GPS systems and sensors for monitoring the structural integrity of buildings and bridges.

You can find out more details here.

Arduino PICO, The Tiny Arduino-Compatible Board

MellBell, the Canadian-based hardware and electronics company, has launched their first product: Arduino PICO!

At first, the company says that Arduino PICO is the smallest Arduino compatible board ever, since it is 0.6″ x 0.6″ inch sized (~15mm squared). This tiny fully-fledged arduino-compatible board has a Leonardo-compatible 16MHz ATMEGA32U4 chip and a micro-USB port. The main cause of building PICO was to have a really small brain to use in many application with worrying about size or allocated space.

PICO’s Technical Specifications

The 16MHz ATMEGA32U4 integrates 2.5KB SRAM and 32KB flash, 4KB of which the bootloader uses. The 1.1-gram PICO has 8x digital I/O pins, 3x analog inputs, a PWM channel, and a reset button. In addition, the board has a 7-12V power with 5V operating voltage, where each I/O pin uses 40mA. It is worth to mention that PICO is competing with 12 x 12mm, $18 µduino, which similarly offers an Arduino Leonardo compatible ATMEGA32U4 MCU and which is smaller in size.

Moreover, MellBell provides an aluminum version that comes with the same ATMEGA32u4 core processor. With an Aluminum not regular fiber-glass, this makes PICO more reliable for overheated applications and environments.

Arduino PICO is now live on a Kickstarter campaign that two days ago had achieved its goal! Fortunately, there is still a chance until 17 Aug 2017 to pre-order one of PICO’s packages. You can get your early bird PICO for CA$18 ($14) and Aluminum edition for CA$32($25). Also, there is a special edition that includes  Aluminium PICO, four colored PICOs,  PICO joystick shield, micro drone kit, PICO solar station,  dual PICO board,  micro li-ion battery, PICO starter kit,  MiniMega board and finally a special “THANK YOU” video for CA$ 960 ($765).

Check out the campaign video:

Edgefx Kits, Get Your DIY Project Kit Now!

Aiming to bridge the gap between the academics and industry in electronics, communication and electrical sectors, Edgefx Technologies was born at 2012 as an online store for project solutions.

Edgefx provides practical skill building solutions to the engineering students in the form of Do It Yourself (DIY) project kits. These kits support wide areas of electronics and communication, and also the latest trends like IoT, Android, Arduino, Raspberry Pi and many more.

Edgefx kits are easy to use and self-explanatory. They come with hardware and training material in the form of extensive audio-visuals and can be purchased online.

The company has grown to have a very strong focus on customer service, quality and morale of the staff and most of all, a passion for what we do. And although we’re a team of almost 30 right now, nothing about us is corporate. We don’t have multiple tiers of hierarchy. The vast majority of our employees work on the front lines, taking care of our customers or shipping items out of the Edgefx Fulfillment Centers.

The website contains more than 200 projects in about 15 different categories. Kits prices range from Rs. 1500 to Rs. 50000 (~ $23 to $750). In addition to the project kits, Edgefx also conducts practical workshops in colleges and schools.

School students, starting from 8 years old, can opt for school electronic projects that empowering them to innovate. It includes three basic level STEM kits and one intermediate level kit. All of these kits are edutainment and fun, with real time applications using latest technologies, and also can create multiple experiments.

Each basic kit has a three project inside, these projects are:

  • Security protection for museum items
  • Touch controlled fan
  • Touch me not LED warning
  • Bike theft alarm
  • Upside down  indicator for fragile item
  • Toll gate auto light LED
  • Security area protecting alarm
  • Auto door opening motor
  • Human detection under debries

The intermediate kit is an Arduino project kit. This project is designed for digital sensors solder-less Arduino projects on breadboard. It will light flasher of different color light on single LED each time on sensing finger swipe with the help of IR obstacle sensor. Also, the project makes different unique sounds on sensing each time.

Beginners Arduino Project Kit

So, if you are searching for some project kits you have to visit the Edgefx store, explore the kits to find the project you want to make and then order it. In the end, don’t forget to share with us your experience once you buy and use the kit!

Visual Studio Code Extension for Arduino is now open sourced!

Visual Studio Code is the cross-platform, open sourced advanced code editor by Microsoft.

Recently, after being interested in IoT and hardware, Microsoft is now searching for tools to make building IoT devices easier. It added an Arduino extension to its Visual Studio Code to enable a better eco-system for IoT developers using Arduino. By making some research about some challenges usually developers face, Microsoft found out that giving more access to new features and capabilities will be a pain killer for IoT enthusiasts. Later on, Microsoft had opened the source of the Arduino extension and placed it on GitHub.

 

Our Arduino extension fully embraces the Arduino developer community and is almost fully compatible and consistent with the official Arduino IDE. On top of it, we added the most sought-after features, such as IntelliSense, Auto code completion, and on-device debugging for supported boards.

Core functionalities of Arduino extension

  • IntelliSense and syntax highlighting for Arduino sketches
  • Built-in board and library manager
  • Verify and upload your sketches in Visual Studio Code
  • Built-in example list
  • Snippets for sketches
  • Built-in serial monitor
  • Automatic Arduino project scaffolding
  • Command Palette (F1) integration of frequently used commands (e.g. Verify, Upload…)
  • Integrated Arduino Debugging (New)

Of course, you can download this extension from Visual Studio Code Marketplace at: https://aka.ms/arduino.

Fortunately, Microsoft had open sourced this project on GitHub under MIT License. Thus, if you are developer, you are more than welcome to participate in developing this extension and here how you can help:

  • File a bug, submit a feature request, you can find the current bug/issue list and feature requests at GitHub’s issue tracker.
  • Join developers and users’ discussions at chat on gitter.
  • Fork the repository, fix bugs and send pull requests
  • Fork the repository, add your new cool features and send pull requests.

Finally, more detailed instructions are available at the Visual Studio Code Repo at GitHub.

Control Your IR Devices With Your Smartphone Bluetooth

Managing some of house devices with its IR remotes may be annoying if you are out of its line of sight. You will have to interrupt the work you are doing, move to another room, turn down the volume of your Hi-Fi for example, then go back and resume your work. Assume you can use bluetooth instead of this process, it will be a time saver and it will maintain your focus.

Using an Arduino UNO with IR and Bluetooth shields, you can create your own bluetooth-controlled general purpose remote control. Bluetooth is a good choice because it doesn’t need any active network to connect with a mobile device. Connection between them is direct (point-to-point) and is suitable for small areas. However, by using a wireless shield you will be able to control the devices through the internet.

A project by Open Electronics demonstrates how to build and program such a device. Its hardware side consists of an Arduino with two shields, and the software side is an Android application. The tutorial shows in details how each shield will work, and also how to setup and prepare the mobile application.

Parts needed for the project:

  • An Arduino Uno board or equivalent (e.g. Fishino Uno);
  • An ArdIR shield:An Arduino shield that allows creating a programmable infrared universal remote manageable from the Internet. It simulates the remote control of TVs, home appliances and air conditioners, by transmitting the same data to the desired.
  • A Bluetooth shield:
    A shield for Arduino based on the RN-42 module. It also has a dip switch that allows you to set up the modes of operation of the module RN-42.
  • A smartphone or tablet with Android OS (version 4.1 or higher), of course complete with a Bluetooth interface.

The mobile application is compatible with Android OS devices of version 4.1 (jellybean) and higher. It needs two phases to be handled:

  1. Research and connection to the target Bluetooth device.
  2. Selection and activating one of the channels, for transmitting the code to the shield.

Once the connection with the Bluetooth shield is established and the channel is selected, the program will be ready to handle a subsequent command by the user and will be listening to possible result messages returned by the remote Bluetooth device.

There is no need for additional hardware parts and work, you only have  to assemble both shields on the Arduino board. But before that, you have to upload a sketch to Arduino for handling the ArdIR shield and managing the communication with the Bluetooth shield.

For more information about how the project works, the structure of the application and source files, you can read the original guide.

Bulgarian National Innovator Creative Spaces

Few days ago, a group of 10 young and experienced people launched a Kickstarter campaign for their new socially significant project “Innovator Creative Spaces“. It is a national network of co-working spaces that cover the whole country of Bulgaria.

The goal of this project is to build creative centers that provide hi-tech workshops for software development and hardware prototypes. It will also have modern tools for prototyping and production laboratories, focused on digital technology, electronics and production technologies.

The creative spaces are targeting enthusiasts, young entrepreneurs and researchers, providing them with required tools and environment to design, make, hack, invent and learn. Their long term goal is to turn Bulgaria into the Silicon Valley of Eastern Europe.

This list of tools is planned to be held in the labs:

  • 3D printers and 3D scanners
  • Laser cutter
  • CNC router
  • CNC lathe
  • Water cutting (water jet cutter)
  • Advanced circuits Lab LPKF Protolaser S
  • CNC PCB Plotter
  • Internet of Things
  • Virtual Reality lab
  • Open Hardware lab
  • Arduino kits
  • Sewing Machines
  • Sergers
  • Embrodiery machines
  • Knitting machines, Soldering irons, Grinders, Vises, Electrocautery
  • Woodworking Facilities
  • Assembly test
  • Other electronic equipment, woodworking tools, measurement gadgets such as micrometer, calipers, etc. And other tools (needed for hacking, creating or fixing just about any project)

Besides the main advantages, the teams see that the co-working spaces will also help building a friendly, encouraging, collaborative and supportive community. The community would enable specialists to enjoy a higher standard of living, achieved by qualification training and mentorship.

At the first phase of the project, only 500 of 1300 square meters will be used. The space includes workshops for different types of machines, separated mini-offices, bar and kitchen, library, conference room, exhibition area, and assembly area.

In addition to membership subscription, the project will provide makers with other services such as prototyping, 3D printing, laser cutting, mentoring and business development, design and branding, events consultations , and more.

We are confident that our project not only helps to deal with youth unemployment, but also improves the re-qualification opportunities and entrepreneurship by discovering new possibilities for personal development in Bulgaria. We believe that the future of our country is in the capable hands of young and pro-active people and gives the fact that a lot of successful start-ups around the world.

If you are interested in supporting this project, you can do that by backing it on Kickstarter and by sharing it with you friends.

96-Layer Memory Chips By Toshiba

The need for larger memory storage for smartphones will never stop, especially with the continuous development of larger and stronger applications. This need is always pushing semiconductor manufacturers to keep trying to fit as much bits as possible in  smaller volumes and with lower costs.

To achieve this, memory chips are now growing in three dimensions instead of two. Recently, Toshiba has developed a new 96-layer BiCS 3D flash memory device with a storage capacity of 32 GB. The new device meets market demands and performance specifications for applications that include enterprise and consumer SSD, smartphones, tablets and memory cards.

This memory chip was built with three bits per cell, known as triple-level cell (TLC) technology. Stacking layers and manufacturing process increase the capacity of each chip with 40% per unit size. They also reduce the cost per bit, and increase the manufacturability of memory capacity per silicon wafer.

In order to add more layers to the chip, Toshiba is working on increasing the number of bits in every cell. In the near future, it will apply its new 96-layer process technology to larger capacity products, such as 64 GB. It will also develop chips with QLC (quadruple-level cell) technology.

By stacking 64 layers of QLCs, the engineers at Toshiba have created a 96-gigabyte device. Integrating 16 of them in one package will achieve a capacity of 1.5 TB, that corresponds to 12 trillion bits.

If you are interested, you can check these out at the 2017 Flash Memory Summit in Santa Clara, California from August 7-10.

Source: elektor

RandA, Combining Raspberry Pi & Arduino

Two years ago, open electronics had produced “RandA“, an Atmega328-based board for Raspberry Pi to deliver the advantages of both, Raspberry Pi and Arduino. Earlier this month, an updated version of RandA has been released to be compatible with Raspberry Pi 3.

RandA is a development board that leverages the hardware equipment and the computing power of Arduino with its shields, and the enormous potential of the Raspberry Pi. It features Atmega328 microcontroller, has RTC (Real Time Clock) module, power button and sleep timer, connectors for 5 volts and connectors for mounting Arduino shield.

Combining these two platforms is a way to exploit specific characteristics of both. Raspberry Pi could use Arduino as configurable device, and Arduino might work as a controller for Raspberry Pi allowing access to complex environments like the network, allowing complex processing or access to multimedia.

RandA was created at first for Raspberry Pi 2 and B+, using the first 20 pins to connect them, the serial port for programming the Atmega328 and for communication with Raspberry Pi. With the enhancements that come with the third version of Raspberry Pi, such as upgrading CPU to a quad-core 64 bit ARMv8 clocked at 1.2 GHz and adding WiFi and Bluetooth transceivers, there were some structure modifications that require updating the RandA.

Raspberry Pi 3 uses the standard UART0 serial port for connection via the Bluetooth interface equipping version 3. Therefore, it is no longer available on GPIO14/15 as it was in the first and second version of Raspberry Pi. The secondary UART1 serial is configured on those pins instead, but this serial port is based on a simulated serial not on a preset UART hardware. In particular, its clock is connected to the frequency of the clock of the system which varies in function of the load in order to save energy.

To solve this, the software is configured to recover the UART0 on GPIO 14/15 pins without modifying any hardware parts. This way will disable the Bluetooth peripheral, but the WiFi is still working and you can use Bluetooth by connecting a Bluetooth dongle via USB.

To know more about the new version of RandA you can review this post, and reading this post to learn more about RandA in general. You can get your RandA board for about $36 and this tutorial will help you get starting with it.

A New Material For Unbreakable Smart Devices

Most of smartphones parts are made of silicons and other compounds, which are expensive and easily-breakable. This problem is making all of smart devices manufacturers looking for stronger and cheaper solutions.

By combining a set of materials, a group of researchers have successfully discovered a new material which could finally finish the disaster of cracked smartphone and tablet screens. The research group is led by a Queen’s University’s School of Mathematics and Physics researchers, with scientists from Stanford University, University of California, California State University and the National Institute for Materials Science in Japan.

Alongside conducting electricity at novel speeds, the new material is light, durable, and can be easily produced in large conventional semiconductor plants. It is a combination of  C60 fullerenes with layered materials such as graphene and h-BN (boron nitride), which presents a unique material with special properties that will be particularly relevant for use in smart device manufacturing.

This material composition has properties that are not naturally found in other materials. The hBN provides stability, electronic compatibility and isolation charge to graphene, while C60 can transform sunlight into electricity. The combining process is known as “der Waals solids” that allows compounds to be brought together and assembled in a pre-defined way.

The material also could mean that devices use less energy than before because of the device architecture so could have improved battery life and less electric shocks. This cutting-edge research is timely and a hot-topic involving key players in the field, which opens a clear international pathway to put Queen’s on the road-map of further outstanding investigations.
~ Dr Elton Santos, leader of the research group

The research shows that the material has the same properties as silicon, but higher chemical stability, lower weight and greater flexibility. These features would make the screens made of this material more difficult to break.

There is still one problem needs a solution. The graphene and the new material architecture is lacking a ‘band gap’, which is an important property to make active semiconductor devices. The team is planning to solve this using transition metal dichalcogenides (TMDs) which are chemically highly stable and have bandgaps like silicon.

According to the research group, this findings will pave the way for further exploration of new materials in the future. You can find more details about this by reviewing the research paper, which was published in the scientific journal ACS Nano, and by reading the official announcement.

Cinque, Combining RISC-V With Arduino

After announcing “HiFive1” at the end of 2016, SiFive is introducing its second RISC-V based development board “The Arduino Cinque“. It is the first Arduino board that is featuring RISC-V instruction set architecture.

Arduino Cinque is running SiFive’s Freedom E310, one of the fastest and powerful microcontrollers in the hardware market. It also includes built-in Wi-Fi and Bluetooth capabilities by using the efficient, low-power Espressif ESP32 chip. During the Maker Faire Bay Area on May 20th, only some prototypes of Arduino Cinque were available for demonstration.

The FE310 SoC features the E31 CPU Coreplex (32-bit RV32IMAC Core) with 16KB L1 instruction cache and 16KB data SRAM scratchpad. It runs at 320 MHz operating speed and it also has a debugging module, one-time programmable non-volatile memory (OTP), and on-chip oscillators and PLLS. FE310 also supports UART, QSPI, PWM, and timer peripherals and low-power standby mode.

The availability of the Arduino Cinque provides the many dreamers, tinkerers, professional makers and aspiring entrepreneurs access to state-of-the-art silicon on one of the world’s most popular development architectures. Using an open-source chip built on top of RISC-V is the natural evolution of open-source hardware, and the Arduino Cinque has the ability to put powerful SiFive silicon into the hands of makers around the world.
~ Dale Dougherty, founder and executive chairman of Maker Media

Details and other specifications of the Cinque are still poor, but we can expect its strength from the chips and SoCs it uses. It uses STM32F103, that has Cortex-M3 core with a maximum CPU speed of 72 MHz, to provide the board with USB to UART translation. ESP32 is also used as for Wi-Fi and Bluetooth connectivity.

Espressif ESP32 Specifications

  • 240 MHz dual core Tensilica LX6 micrcontroller
  • 520KB SRAM
  • 802.11 BGN HT40 Wi-Fi transceiver, baseband, stack, and LWIP
  • Classic and BLE integrated dual mode Bluetooth
  • 16 MB flash memory
  • On-board PCB antenna
  • IPEX connector for use with external antenna
  • Ultra-low noise analog amplifier
  • Hall sensor
  • 32 KHz crystal oscillator
  • GPIOs for UART, SPI, I2S, I2C, DAC, and PWM
A first look at the RISC-V-based Arduino Cinque, a SiFive R&D project.
A first look at the RISC-V-based Arduino Cinque, a SiFive R&D project.

The RISC-V Foundation is working to spread the idea and the benefits of the open-source ISA. Its efforts include hosting workshops, participating in conferences, and collaborating with academia and industry. The foundation had also worked with researchers from Princeton University to identify flaws with the ISA design. They presented their findings at the 22nd ACM International Conference on Architectural Support for Programming Languages and Operating Systems.