Home Blog  





7 Nov 2014

collage-600x332

Colin over at CuPID Controls writes:

We want to put our remote sense and control modules out into the wild and read and aggregate them as it makes sense.
Our basic system layout is as below. We’ve got multiple wireless nodes that broadcast data periodically, and a controller/aggregator that will log this data, acknowledge receipt, and do something useful with it. Eventually, we may have intermediate powered nodes that serve to mesh the grid out, but for now, our nodes just send data to the controller.
We’re currently using these awesome little RF units, called Moteinos. They are an Arduino clone that can use the standard IDE with their bootloader. They’ve got the ever-so-popular ATMega328P chip that is familiar to anybody working with an Arduino Nano or Uno.

[via]

Adventures in Moteino: Remote temperature monitor - [Link]

27 Oct 2014

F4NPSGWI1OU3J34.MEDIUM

by appleman123987 @ instructables.com:

The planterbot is a plant monitoring robot. It uses capacitance for sensing moisture from the plant instead of using the usual soil probe, this means that wires don’t go into the plant. It also detects temperature and light using thermistors and Cds photocells and displays the temperature and light graphically on the front facing LCD.

Planterbot – The Plant Monitoring Robot - [Link]

13 Sep 2014

Charles Edward Pax has announced that the T400 temperature datalogger is now being offered on Kickstarter!

The Pax Instruments T400 datalogger is an open source four-channel thermocouple temperature datalogger based on the Arduino™ Leonardo platform. It is ready to use out of the box with the features you want most. Measurements can be logged to MicoSD card, printed to serial port, and graphed. The T400 is a great tool for anything from live thermal process monitoring in the lab to long-term environmental data collection in the field.

[via]

Data logger handles four thermocouples - [Link]

12 Sep 2014

BroadcomIot

by elektor.com:

What could you make with a key fob containing a Bluetooth (BCM20737S) Smart chip, gyroscope, accelerometer, compass, barometer and humidity/temperature sensors? Broadcom are hoping their WICED (pronounced wicked) Sense kit will make an ideal development platform for engineers and developers working on the next generation of IoT applications. Together with the hardware Broadcom have an integrated Software Development Kit (SDK) using the WICED Smart SDK v2.1 and a downloadable WICED Sense app from the Apple App store or from Google Play for Android devices to allow interaction with the fob via a smartphone or tablet etc.

Something Wicked this Way Comes - [Link]


6 Sep 2014

FYF3GCGHOHY6T61.MEDIUM

by BrittLiv @ instructables.com:

Heating things up is one of the most performed tasks in a lab. Quite a lot of times it is not enough to simply hold something at a certain temperature, but the rate at which something is heated and for how long is just as important. Especially when you try to develop catalysts for chemical processes, the temperature program and exact temperature control is crucial and you probably do not want to stay in the lab for 16 hours to manually adapt your temperature program. Unfortunately, programmable temperature controllers that can automate processes are really expensive. So I decided to build a highly customizable controller that is able to run temperature ramps and read multiple different temperature programs from a SD card. It also provides a logging function on the SD card that allows you to evaluate the resulting temperature profile after running a program.

Programmable Temperature Controller + Hot Plate - [Link]

15 Aug 2014

PIC18_Clock

by embedded-lab.com:

This DIY digital clock plus thermometer is designed by Joe Farr and is based on PIC18F25K22 microcontroller. The complete construction details of this project including circuit diagrams, PCB layouts and PIC firmware are posted in his website. He developed his firmware using Proton PIC BASIC compiler, which is available for download for free for this particular PIC microcontroller. He uses DS1302 RTC for timekeeping and DS18B20 for temperature measurement. The temperature and time are displayed on four 2″ seven segment LED displays.

Another PIC-based digital thermometer and clock - [Link]

7 Aug 2014

IMG_0587-600x448

A simple temperature control system for 3D print or other constant temperature control purpose by Xiang:

I plan to build a home-made 3D printer controlled by my Raspberry Pi, which, unfortunately, does not have any analog data acquisition pin. Therefore I decide to build a stand-alone temperature control system.
The idea is very simple. I use a power resistor as the heater and a thermistor as the temperature sensor. The system contains an LM324 quad op-amps chip. One op-amp is used as a comparator to compare the thermistor resistance with a nominal resistance and output LOW or HIGH as the comparison result. The other three op-amps inside the LM324 are used to perform some linear transformation and output a voltage that is proportional to the thermistor temperature. This voltage is applied to a 0-30V voltmeter so one can read the temperature. A N-Channel MOSFET transistor is used to control on/off of the heater.

[via]

Simple temperature control system - [Link]

2 Aug 2014

iotera

by elektor.com:

We have already seen a number of ideas for tracking tags seeking funds on Kickstarter, most systems are limited by the range of Bluetooth communication with a smart device. This system from Iotera tackles the problem using cloud-based thinking: The basic wireless system consists of one or more tags or ‘iotas’ and a home base unit. Each 22 x 11 x 3 mm iota contains a  chip, accelerometer, temperature sensor, speaker, RF transceiver, Bluetooth (unused so far) and a battery to give up to three months operation. Each iota communicates with the home base unit using wireless channels in the 902 to 928 MHz band giving a range of up to four-miles. Back home, the base unit receives the low-speed transmissions from the iota tag and forwards the information to a server via a Wi-Fi connection.

Novel Cloud-based Tag System - [Link]

28 Jul 2014

screenshot

by dzzie @ github.com

The Dht22 sensor is installed in the humidor.

The arduino takes a reading every 20 minutes, and uploads the data to your webserver.

The PHP script will record the data to the database. If the temp or humidity is out of desired range, it will send you an email alert.

Alerts must be manually cleared latter by logging into the web site, so you are not spammed, before you get a chance to fix it.

When you add water, push the select button on the LCD sheild to record it. This will be saved to the db as well. Power resets will also be recorded to the database.

See screen shot for example web report.

Temperature controlled humidor with web logging, monitoring and alerts - [Link]

28 Jul 2014

obr1562_1

Miniature calibrated humidity and temperature sensor Sensirion SHTC1 is usable even in space – limited applications.

Really miniature dimensions and a low price are main benefits of new calibrated sensors SHTC1 from production of company Sensirion. If you ever tried well known sensors series SHT2x, probably you´ve been surprised by their small dimensions (3,2×3,2x2mm). However the new sensor SHTC1 shifts dimensions a level further, or better said – lower. The result is a DFN package with dimensions of only 2x2x0.75mm, what in praxis represents a package, which you may not notice at a cursory look at a populated PCB. That´s why the SHTC1 is primarily intended for mobile applications and everywhere, where a spared space and a minimal power consumption are beneficial.

Taking a low price in mind, the guaranteed accuracy of SHTC1 chip is relatively excellent, roughly on a level of SHT21. Typical accuracy of ±3% in a range of 20-80% RH and ±0.3°C is probably fully sufficient for majority of applications. 1.8 V supply voltage and ultra low power consumption below 1uJ/measurement are ideal for battery powered devices. SHTC1 supports I2C fast mode (0-400 kHz). This small package practically can´t be soldered by hand, but it is relatively easily possible by means of a solder paste and a hot-air soldering station.

Also the SHTC1 is produced by a well proven CMOSens technology, which proves its reliability and a long-term stability in industry. Similarly, the SHTC1 also isn´t only a “sensor” but a ready-made calibrated solution containing 2x sensor, low-noise amplifier, A/D interface, data processing unit with calibration data in a ROM and a communication interface. Detailed information can be found in the Sensirion SHTC1 datasheet and the Sensirion Humidity flyer.  

We´ve got samples ready for you!
If you´re interested in trying this perspective sensor, take part in a contest below the article, or contact us on a well known address info@soselectronic.com.

SHTC1 we keep so far as an item upon order, but we´re able to supply it to you in a short leadtime and soon it will be a standard stock item.

SHTC1 – humidity and temperature from a pin head - [Link]



 
 
 

 

 

 

Search Site | Advertising | Contact Us
Elektrotekno.com | Free Schematics Search Engine | Electronic Kits