FiPy, The Future IoT Module

The hardware startup Pycom have been working hard to create a fast-develop-and-connect hardware portfolio, a portal and gathered enough developer manpower to unleash the IoT growth potential. Pycom has just launched its newest product: FiPy!

301c48d603db267c9025d14e206c1b09_original

FiPy is the new IoT module that connects your device to other networks. According to what the company describes, it is the most comprehensive solution, unifying LTE with other proprietary or unlicensed LPWA technologies into a single, five-network IoT connectivity solution.

2c0702a7a39b0313f7b08f94c202b7e2_original

“In addition to WiFi, BLE, LoRa and Sigfox, we’ve added the latest cellular technology for IoT: LTE-M. But, we didn’t just go for one frequency type either. Nope, we partnered with the leaders in their field, Sequans, and are now proud to confirm that our module will have both CAT NB1 and CAT M1.”

The board specifications

  • ESP32-based – Espressif ESP32 SoC
  • Dual processor and WiFi+Bluetooth radio system on chip
  • Supports 5 networks: WiFi, BLE, cellular LTE-CATM1/M2(NBIoT), LoRa, and Sigfox
  • RTC running @ 32KHz
  • Size: 55 x 20 x 3.5 mm
  • Micropython enabled
  • Pymakr and Pymate compatible
  • All your apps from WiPy, LoPy and SiPy will work on FiPy too
  • Open source firmware

Pycom is redefining IoT with this brand new module! FiPy gives access to all the world’s LPWAN networks on one tiny board. It is now live on Kickstarter, check the campaign video:

You can pre-order your FiPy now for $39, the campaign still has 23 days to go and it has already achieved double of its goal. More information about FiPy plus its sensors and accessories check the crowdfunding campaign and the official website.

Dual Screen Netatmo Weather Station

Netatmo Weather Station is a module that measures your indoor comfort by providing vital information such as temperature, humidity, air quality, and CO2, alerting you when you need to air out your home to bring down its pollution levels.

fr8fd78ivcvqdh7-medium

One of the Netatmo limitations is that you need to use a smartphone to view the collected information by the station. To solve this, Barzok had developed an Arduino-based screen to display the weather data remotely, and published a full guide to build it in this instructable.

Barzok’s first attempt was a stand-alone device inside weather station using an Arduino UNO, a real time clock, a temperature and pressure sensor, and a 2.8” screen. It displays the time, pressure history over the past 6 days, and temperature as digits and as a gauge bar.

flxlafbivcvqchz-medium

The next experiment was connecting the Arduino UNO with Netatmo API through an Ethernet shield and displaying the data on the screen. The connection was the difficult part as the Arduino was not powerful enough to establish an HTTPS connection and receive valuable information from Netatmo servers.

The solution uses a PHP client on a web server, which connects with Netatmo servers, and then the Arduino retrieves the data using the standard HTTP.

f4bjzi3ivcvqcwg-medium-1

The final version of the station consists of an Arduino Mega, two 2.8” inches screens, and an ESP8266 Wifi module. There is no limit of the Arduino type and screen size, you can use your model with minor changes of the code. Barzok also made a custom circuit that transforms the 9V input voltage into a 5V to power the Arduino and 3.3V to power the ESP8266.

fdd0p87iva4yibz-medium

The diagram presents the process, the Netatmo module gathers the weather information and uploads them to the Netatmo servers. Then a PHP application runs on remote server and retrieves the information from the Netatmo servers and turns it into simple text data. Finally the Arduino receives the simple texts with the ESP8266 module and displays them on the two screens.

The two screens displays different information, the left one provides the real time data received from the Netatmo sensors about temperature, pressure, humidity, rain and CO2. The other screen shows the time and date, pressure history, and 3 days weather forecast.

f03ni4miva4yiem-medium

fyodjj4iva4yif3-medium

You can find more instructions to build this project with detailed description about the code, schematics, box design at the project page.

ElectroCalc – Electrical and Electronics Calculator

unnamed

“Tiago” tipped us with his latest Android App. His app, ElectroCalc is a fast calculator for electrical and electronic circuits. The calculator includes many tools and comes in a free and a Pro version. Check it out!

ElectroCalc – Electrical and Electronics Calculator – [Link]

Make Your Own Power Meter/Logger

fwrdx89ivo5ma9u-medium

In this tutorial will show us how to build a power meter and logger using Arduino and INA219 power monitor IC:

In this project I will show you how I combined an Arduino, an INA219 power monitor IC, an OLED LCD and a Micro SD Card PCB in order to create a power meter/logger that has more functions than the popular USB Power Meter. Let’s get started!

Make Your Own Power Meter/Logger – [Link]

LTC3786 – Efficient boost controller takes the heat

linear-ltc3786

Linear Technology has launched a higher-temperature 150°C version of its LTC3786 step-up DC/DC controller that boasts 98% efficiency. This H-grade device replaces the boost diode with an N-channel MOSFET for higher efficiency and reduced power loss. by Susan Nordyk @ edn.com:

The controller produces a 24-V, 5-A output from a 12-V input with up to 98% efficiency, useful for automotive, industrial, and medical applications. It operates from an input voltage ranging from 4.5 V to 38 V during startup, maintains operations down to 2.5 V after startup, and regulates an output voltage as high as 60 V. Its low quiescent current of 55 µA helps extend the run time of battery-powered applications in standby mode.

LTC3786 – Efficient boost controller takes the heat – [Link]

4 Channel Relay Board

4-channel-relay-board-i044-500x500

4 Channel Relay Board is a simple and convenient way to interface 4 relays for switching application in your project. Very compact design that can fit in small area, mainly this board is made for low voltage applications.

Features

  • Input supply 12 VDC @ 170 mA
  • Output four SPDT relay
  • Relay specification  10A/24V DC
  • Trigger level 2 ~ 5 VDC
  • Header Connector for connecting power and trigger voltage
  • LED on each channel indicates relay status
  • Power Battery Terminal (PBT) for easy relay output and aux power connection
  • Four mounting holes of 3.2 mm each

4 Channel Relay Board – [Link]

Large Current Relay with Dual Output DC-DC Converter for Hobby CNC/Router

large-current-relay-m119-500x500

Single Channel Large current relay board with dual DC-DC converter board is mainly designed for Hobby CNC, Routers, and Plasma cutters.

Hobby CNC controller requires multiple DC outputs to drive various things.  This board provides 5V DC and 12V DC 1Amp each. The dual supply helps driving LPT breakout board, Sensors, Limit switches and few other things that require 5V and 12V.

The Relay has large current handle capacity and can be used to drive spindles, solenoids, and other things that require switching. The relay requires TTL High signal to trigger or it has the capability to even trigger with GND signal.

Features

  • Supply Input 15V to 35V DC
  • DC Outputs 5V @ 1A & 12V 1A
  • On Board LED for Relay Output
  • Relay Contact 20Amp NC and 30 Amps No 230V AC
  • Relay Trigger 5V TTL in or GND input
  • Screw Terminal and 2 Pin Header Connector Provided for Supply Input
  • Screw Terminal and 2 pin header provided for 5V DC & 12V DC Output
  • 3 Pin Screw Terminal Provide for Relay output Connections NO/NC
  • 3 Pin Header Connector for TTL + Signal Trigger, and Low GND signal Trigger
  • Close The Jumper to trigger rely with low GND signal input

Large Current Relay with Dual Output DC-DC Converter for Hobby CNC/Router – [Link]

Badgerboard, LoRa Future IoT Development Board

The LoRa Alliance™ is an open, non-profit association of members who believe that the Internet of Things era is now, its LoRaWAN is a Low Power Wide Area Network with features that support low-cost, mobile, and secure bidirectional communication for Internet of Things (IoT), machine-to-machine (M2M), smart city, and industrial applications. LoRaWAN is optimized for low power consumption and is designed to support large networks with millions and millions of devices. Innovative features of LoRaWAN include support for redundant operation, geolocation, low-cost, and low-power – devices can even run on energy harvesting technologies enabling the mobility and ease of use of Internet of Things.

Check this video to learn more about LoRa and its protocol:

Badgerboard is an Arduino compatible LoRaWAN™ open source development kit, that can be easily extended to a prototype or even a small batch product. Development board has a battery charger and antenna connector on board.

Using as small as the battery you have in your watch, you can power your Badgerboard to send and receive radio waves, that can reach from 1km to 3km in the urban area up to 10+ km in the rural areas

94e86e7d258145170df83e310866865b_original

The communication is powered by widely used Microchip LoRaWAN module. There are two editions of the module one using  RN2483-I/RM101 for the 433/868 frequency bands and the other is using RN2903-I/RM095 for the 915 MHz band and its sub-bands. The LoRaWAN stack is already part of the module and all needed libraries for LoRa functionality are included.

Here are the features of the module:

306d6b0953444211c0519770c96c47da_original

Check Badgerboard in action and the possibilities that can be done using it:

Badgerboard is now live on a Kickstarter campaign, you can pre-order the early bird board for $45 here. You can check their website to keep involved with the latest updates www.badgerboard.io

LC-04 4 Channel Logic Converter 3.3V – 5.0V

If you have ever tried to connect a 3.3V device to a 5V system, you know what a challenge it can be. The LC-04 bi-directional logic level converter is a small device that safely steps down 5V signal to 3.3V and steps up 3.3V to 5V at the same time. In this instructable, mybotic explained the procedure to use the LC-04 bi-directional logic converter.

Description:

The LC-04 module offers bi-directional shifting of logic level for up to four channels. The logic level HIGH (logic 1) on each side of the board is achieved by 10K Ω pull-up resistors connected to the respective power supply. This provides a quick enough rise time of logic level to convert high frequency (400KHz I²C, SPI, UART etc.) signals without delay.

This module has the following features:

  • Dual-supply bus translation :
    • Lower-voltage (LV) supply can be 1.5 V to 7 V
    • Higher-voltage (HV) supply can be LV to 18 V
  • Four bi-directional channels
  • Small size: 0.4″ × 0.5″ × 0.08″ (13 mm × 10 mm × 2 mm)
  • Breadboard-compatible pin spacing

    The bi-directional level-shifting circuit
    The bi-directional level shifting circuit

The Pinout:

The LC-04 logic level converter has two types of pins:

  1. Voltage input pins :
    • 2 pins (GND and LV) on Low Voltage  side
    • 2 pins (GND and HV) on High Voltage  side
  2. Data channels :
    • 4 pins (LV1, LV2, LV3, and LV4) on Low Voltage  side
    • 4 pins (HV1, HV2, HV3, and HV4) on High Voltage  side

Pin HV and LV set HIGH (logic 1) logic level on High voltage side and Low voltage side respectively, with respect to the GND.

Data channel pins shift logic levels from one voltage reference to another. A low voltage signal sent into LV1, for example, will be shifted up to the higher voltage and sent out through HV1. Similarly, a high voltage signal sent into HV1 will be shifted down to the lower voltage and sent out through LV1.

LC-04 Bi-directional logic level converter pinout
LC-04 Bi-directional logic level converter pinout

Parts List:

  1.  LC-04 4 Channel Logic Level Converter
  2. Arduino Uno Board and USB Cable
  3. Breadboard
  4. Crocodile Clip (optional)
  5. Multimeter

The Wiring:

The wiring is pretty simple. You may even omit the breadboard by making end-to-end connections. Two types of connections are required:

  1. Pin connection to shift down (5V to 3.3V)
  2. Pin connection to shift up (3.3V to 5V)
Pin Connection to Shift Down:
  1. LV to 3.3V
  2. LV’s GND to multimeter’s black probe
  3. LV3 to multimeter’s red probe
  4. HV to 5V
  5. GND to UNO’s GND
  6. HV3 to Digital Pin 4
Logic level shift down using LC-04 logic level converter
Logic level shifting down using LC-04 logic level converter
Pin Connection to Shift Up:
  1. LV to 3.3V
  2. LV’s GND to UNO’s GND
  3. LV3 to Digital Pin 4
  4. HV to 5V
  5. GND to multimeter’s black probe
  6. HV3 to multimeter’s red probe
Logic level shifting up using LC-04 logic level converter
Logic level shifting up using LC-04 logic level converter

Introducing Autodesk Circuits Simulator For Beginner

Circuits.io is an online platform created by Autodesk for hardware hackers. It provides a browser-based application for designing, simulating electronic circuits and creating PCB boards. Autodesk circuits simulator can simulate Arduino-based projects for testing designs and programs before creating them in real life.

tumblr_inline_myzj7r9yiv1qal3cc

The simulator allows you to learn electronics using a virtual Arduino board and breadboard without blowing up capacitors or burning yourself with solder on your work table. It is free to use, but more features are available with premium accounts. To start using circuits.io just go to the website, create an account, and start building your circuit.

This instructable guides you to get familiar using the simulator through three different projects. You will only need a computer with internet access, and you can build these projects in real if you have the components.

In this tutorial you will work with these parts:

  • Arduino Board, the brain of your circuits.
  • Breadboard, the board where you will connect the elements.
  • Breadboard wires.
  • Resistors.
  • LEDs.
  • Potentiometer.
  • LCD.
  • DC motor.

The first project is simple and easy, it is about making a LED turn on and off continuously. The circuit consists of only one resistor and one LED connected with the Arduino, which will turn the LED on and off for a period of time defined in the code.

blink

Another simple project is based on the LCD (Liquid Crystal Display) which receives information from Arduino and displays it. You can program the Arduino to display a message you want, control its location, make it blink, or move the message on the screen. You will also use a resistor and a potentiometer to control the brightness of the backlight.

lcd

In the third project you will control DC motor speed and its spins in Autodesk Circuits. The motor must be fed by an external power source, and the Arduino will control the current flow to the motor through the TIP120 transistor.

motor

The full instructions and guides are available in this instructable. When you finish making these projects you can explore the simulator features and components, and start building your own projects.