Mcu category

Beacon Keyer

Lukas Fässler from Soldernerd published a project showing how he built a PIC-based beacon keyer:

This is likely the first ham radio related project that I document here on this blog
But my very first PIC project was a beacon keyer that I made for my father, HB9BBD. That was in 2013. A beacon keyer is a great project to get started with microcontrollers since it’s not much more than a fancy way of blinking an LED.

Beacon Keyer – [Link]

6 Channel RF Remote Controller Using CC2500 RF Modules

The 6 Channel RF Remote Controller designed using CC2500 RF Transceiver modules and PIC16F1847 micro-controller from microchip. Transmitter provided with 6 tact switch, 4 Address Jumpers to pair multiple unit so they don’t interfere with each other. Board provided with power LED, valid transmission LED. Project works with 5 V DC, On board LM1117-3.3V regulator for CC2500 Module.  Two in one PCB can be used as Transmitter & Receiver.

Receiver works with 5V DC. 4 Jumper to paring RX& TX units, valid signal LED, power LED, and 9 Pin connector for outputs.  Same PCB is used as transmitter and receiver.  All outputs are Latch Type and TTL 5V Signal for easy interface with other devices like Relay Boards, Solid State Relays.

6 Channel RF Remote Controller Using CC2500 RF Modules – [Link]

FPGA eink controller

Julien @ hackaday.io build a custom board to control e-ink display. He writes:

The idea is to control an old broken kindle 3 eink display with a FPGA. I started looking at http://essentialscrap.com/eink/waveforms.html and http://spritesmods.com/?art=einkdisplay since eink constructor is so secretive that you can’t find any information. I got some success with a stm32f4 microcontroller but was disapointed by the poor performance (low refresh, black and white only). So I decided to do something better using an FPGA and some memory, I started with the ice40 Olimex board https://www.olimex.com/Products/FPGA/iCE40/iCE40HX1K-EVB/open-source-hardware.

FPGA eink controller – [Link]

Magic Mote MSP430G2553 wireless sensor node with NRF24L01+ module

Tom from Magic Smoke writes:

This is my first time designing a PCB for MSP430. I really like the NRF24L01+ booster pack but I would like something smaller to use for remote temperature sensors. With that in mind I’ve designed a 24.5 x 50 mm PCB (2 on a 5×5 cm prototype) featuring MSP430G2553 and an adapter for a 8-pin NRF24L01+ module using essentially the same pinout, with the intention of using the Spirilis library. There’s a jack socket to connect a 1-wire sensor (e.g. DS18B20), a 4-pin header to connect a temperature/humidity sensor (SHT22 or similar), a programming header that gives serial access, and 3 other general purpose I/O pins.

Magic Mote MSP430G2553 wireless sensor node with NRF24L01+ module – [Link]

Cortex-M-based MCUs Set Pace For Automotive Design

AUTomotive Open System Architecture (AUTOSAR) is a worldwide automotive consortium trying to create and establish an open and standardized software architecture for automotive electronic control units (ECUs). However, as is always the case with industry consortiums and standards, they are not endorsed by all interested parties, and, to complicate matters even more, not all applications require AUTOSAR.

With this in mind NXP has launched its S32K1 family of scalable ARM Cortex-M devices together with a suite of automotive grade tools and software. Initially the family will span 128KB-2MB of flash memory. All family members include ISO CAN FD, CSEc hardware security, ASIL-B support and ultra-low-power performance. Check out the demo video.

Block Diagram

In applications where the use of AUTOSAR is not mandated, the S32K platform provides a path for self-development with a free-of-charge, pre-qualified, automotive-grade software development kit (SDK) that enables rapid prototyping with simple drag and drop functionality. For AUTOSAR applications, NXP’s MCAL and OS support has been expanded with new Complex Device Drivers (CDD) and a new S32K starter kit is available free of charge for evaluation.

You can learn more about NXP’s S32K1 product line and the suite of automotive-grade tools and software that support ARM Cortex-based MCUs at the official website.

Source: Elektor

10 or 12-bit DAC from the ATtiny85

David Johnson-Davies @ technoblogy.com writes:

This article describes how to get up to two 10 or 12-bit digital-to-analogue outputs from an 8-bit Timer/Counter, such as in the ATtiny85. To test the routine I built a circuit which allows you to vary the brightness of two LEDs with two potentiometers:

10 or 12-bit DAC from the ATtiny85 – [Link]

iCP12Q DAQduino, A Data Acquisition Board In Arduino Form

iCircuit Technologies had produced the iCP12A DAQduino, an Arduino-like development board for signals monitoring, data acquisition and circuit troubleshooting at 1mSec/Samples period.

The DAQduino board features a PIC18F2550 microcontroller with 14 digital I/O pins, two of them are PWM, and 6 input analog pins. With these IO ports, user can easily plug in different type of 3rd party boards with direct connection to USB port.

DAQduino has the same concept of the ICP12 usbStick with different shape and more I/O pins. Its PIC MCU is preloaded with Microchip’s USB HID bootloader that allows users to upload an application firmware directly through a PC’s USB port without any external programmer.

Features of iCP12A:
  • Arduino form connection, easy interfacing, high performance and user friendly device
  • Onboard with PIC18F2550 [Default] or PIC18F2553 28-Pin Flash USB PIC MCU
  • Excellent flexibility that allows user to expand the board features with plug and play modules
  • Peripheral Features:
    • 19x IO Port (6x 10/12bit ADC pins, 2x 10 bit PWM/Freq/DAC pins)
    • Serial port emulation (UART Baud Rates: 300 bps to 115.2 kbps)
    • Supported operating systems (32bit/64bit): Windows XP ,Windows Vista, Windows 7, Windows 8, Windows 10, Linux, Mac OS X and Raspberry Pi
    • On board Female Mini USB and Micro USB Type B connector
    • Maximum Input Voltage: 15Vdc
    • With 500mA current output at VDD pin with over-current protection
    • 20MHz oscillator
    • Green LED – power on indicator
    • 2x LEDs (Green, Red) – status indicator
    • ICSP Connector – on-board PIC programming
    • Switch Mode Selection – Boot or Normal mode

DAQduino board is shipped with a preloaded data acquisition firmware that emulates as a virtual COM port to PC. Thereafter, the communication between the PC and DAQduino is serial and through a miniUSB cable. The firmware also supports basic I/O control and data logging feature. They provide a PC application named SmartDAQ that communicates with the DAQduino and controls its I/O pins, PWM outputs, and record ADC inputs.

iCP12A DAQduino Layour

SmartDAQ has a very friendly GUI with real-time waveform displays for 6 analog input channels. The time and voltage axes scales are adjustable. SmartDAQ can log the ADC data in both text and graphic form concurrently. One can utilize this feature to construct a low-cost data acquisition system for monitoring multiple analog sensor outputs such as temperature, accelerometer, gyroscope, magnetic field sensor, etc.

SmartDAQ v1.4 Features:
  • Sampling channel: 6x Analogs (10/12 bit ADC) + 7x Digitals (Input/Output)
    • PIC18F2550 [10bit ADC: 5mV Resolution]
    • PIC18F2553 [12bit ADC: 1mV Resolution]
  • Maximum Sampling rate: 1KHz or 1mSec/Samples
  • Sampling voltage: 0V – 5V (auto & scalable graph) at 1mV Res. Dispaly
  • Sampling period:
    • mSec: 1, 2, 5, 10, 20, 50, 100, 200, 500
    • Sec: 1, 2, 5, 10, 20, 30
    • Min: 1, 2, 5, 10, 20, 30, 60
  • Trigger Mode: Larger [>], Smaller [<], Positive edge [↑], Negative edge [↓]
  • Sampling Mode: Continuous, Single
  • VDD or External Vref Input Mode
  • Logging Function:
    • Save Format: Text, Graphic, Both
    • Start Time: Normal, Once Trigger, 24-Hour Clock (Auto Run)
    • End Time: Unlimited, Data Size, 24-Hour Clock (Auto Stop)
SMARTDAQ1.4 Window

The DAQduino is available with the PIC18F2550 for $30, and with the PIC18F2553 for $39.9. You can order it through the official page where you can also get more details about iCP12A and its source files.

You can also see this product preview to know more about its functionality.

AT88CK490, A New Atmel CryptoAuthentication USB Dongle Evaluation Kit

Atmel had produced a new USB evaluation kit “AT88CK490” to evaluate the performance and applicability of the Atmel Family of CryptoAuthentication devices. The kit contains three devices; ATSHA204, ATAES132, and ATECC108.

AT88CK490 Kit devices are based on Atmel AT90USB1287 microcontroller which provides a convenient USB 2.0 interface allowing users to understand and experiment with the CryptoAuthentication devices. Developers can use the provided 5-pin interface at the end of the board and can be used to monitor the I2C protocol.

This kit gives engineers, developers, and decision makers a tool to understand the device architecture and its usages for product authentication, confidential file protection, performing two-factor logons, or preventing software piracy.

CryptoAuthentication USB Dongle Kit Features

  • Atmel ATAES132A CryptoAuthentication IC: I2C Address (0xA0)
  • Atmel ATSHA204A CryptoAuthentication IC: I
  • 2C Address (0xC8)
  • Atmel ATECC108A CryptoAuthentication IC: I2C Address (0xC0) – AT88CK490 Only
  • Atmel ATECC508A CryptoAuthentication IC: I
  • 2C Address (0xC0) – AT88CK590 Only
  • Atmel AT90USB1287AVR
    • 128KB of In-system Programmable Flash
    • 4KB EEPROM
    • 8KB Internal SRAM
  • USB 2.0 Full Speed Device
  • Power LED (Red)
  • Three Status LEDs (Blue)

Atmel CryptoAuthentication is a crypto element device family with ultra-secure hardware-based key storage. It is used to ensure that the product and its accessories are original and are not counterfeited. CryptoAuthentication devices support modern cryptographic standards. They are cost-effective, require only a single GPIO, use very little power, operate over a wide voltage range, and work with any MCU.

The AT88CK490 evaluation kit has been designed to work with the Atmel CryptoAuthentication Evaluation Studio (ACES) configuration environment GUI. The complete source code for the Atmel AVR® is available, along with a schematic, a bill of materials, and Gerber files.

ICP12 USBSTICK, A New Tool for Signals Control & Monitoring

iCircuit Technologies had produced the iCP12 usbStick, a mini size 28 pin USB PIC IO development board and a good tool for signal monitoring (as oscilloscope), data acquisition and circuit troubleshooting at 1mSec/Samples period.

The iCP12 usbStick is a PIC18F2550 based USB development board that comes preloaded with Microchip’s USB HID bootloader which allows users to upload an application firmware directly through a PC’s USB port without any external programmer. It provides access to its I/O pins through 0.1″ pitch headers. A slide switch is also provided on board to select the operation of the board in Bootloader or Normal mode.

The features of iCP12 are listed as following:

  • Mini size, easy interfacing, high performance and user friendly device
  • Used with PIC18F2553 28-Pin Flash USB PIC MCU
  • Excellent flexibility that allows user to expand the board with plug and play modules
  • Peripheral Features:
    • 13x IO Port (6x 12bit ADC pins, 2x 10 bit PWM/Freq/DAC pins)
    • Serial port emulation (UART Baud Rates: 300 bps to 115.2 kbps)
    • Supported operating systems (32bit/64bit): Windows XP ,Windows Vista, Windows 7, Windows 8, Windows 10, Linux, Mac OS X and Raspberry Pi
    • Maximum Voltage: 5Vdc
    • 100mA current output at VDD pin with over-current protection
    • 20MHz oscillator
    • Green LED – power on indicator
    • 2x LEDs (Green, Red) – status indicator
    • ICSP Connector – on-board PIC programming
    • Switch Mode Selection – Boot or Normal mode

The iCP12 usbStick board is shipped with a preloaded data acquisition firmware that emulates as a virtual COM port to PC. Thereafter, the communication between the PC and usbStick is serial. The firmware also supports basic I/O control and data logging feature. They provide a PC application named SmartDAQ that is specially developed to communicate with the usbStick and control its I/O pins, PWM outputs, and record ADC inputs.

SmartDAQ has a very friendly GUI with real-time waveform displays for 6 analog input channels. The time and voltage axes scales are adjustable. SmartDAQ can log the ADC data in both text and graphic form concurrently. One can utilize this feature to construct a low-cost data acquisition system for monitoring multiple analog sensor outputs such as temperature, accelerometer, gyroscope, magnetic field sensor, etc.

SmartDAQ v1.3 Features:

  • Sampling channel: 6x Analogs (12bits ADC/1mV Resolution) + 7x Digitals (Input/Output)
  • Maximum Sampling rate: 1KHz or 1mSec/Samples
  • Sampling voltage: 0V – 5V (scalable graph) at 5mV Resolution
  • Sampling period:
  • mSec: 1, 2, 5, 10, 20, 50, 100, 200, 500
  • Sec: 1, 2, 5, 10, 20, 30
  • Min: 1, 2, 5, 10, 20, 30, 60
  • Trigger Mode: Larger [>], Smaller [<], Positive edge [↑], Negative edge [↓]
  • Sampling Mode: Continuous, Single
  • Logging Function:
  • Save Format: Text, Graphic, Both
  • Start Time: Normal, Once Trigger, 24-Hour Clock (Auto Run)
  • End Time: Unlimited, Data Size, 24-Hour Clock (Auto Stop)
  • Recorded Data format: Graphic | text | excel

iCP12 is available with the PIC18F2550 for $15, and with the PIC18F2553 for $24.5. You can order it through the official page where you can also get more details about iCP12 and its source files.

You can also see this product preview to know more about its functionality.

Easy ARM Programming With 1Bitsy & Black Magic Probe

1 Bit Squared executes hardware and software design, development and manufacturing for a wide range of micro to nano UAV systems available on the market: from quadcopters to multicopters as well as airplanes, helicopters and transitioning vehicles. A Kickstarter campaign was launched to unveil  the new Black Magic Probe V2.1 with its companion demo platform 1Bitsy V1.0.

The Black Magic Probe is a JTAG and SWD Adapter used for programming and debugging ARM Cortex MCUs. It’s the best friend of any ARM microcontroller developer. It works like a brain tap, it allows you to inspect and affect any aspect of the program you are running on your 1Bitsy without having to add special code. 1Bitsy is a user friendly open-source ARM Cortex-M4F Development Platform.

Check the campaign video to know more about the new products.

The Plug & Play JTAG/SWD ARM debugger features:

  • On board implementation of JTAG (Joint Test Access Group) protocol
  • On board implementation of the SWD (Serial Wire Debug) protocol
  • High speed data interface to the Device Under Test 4.5MBit
  • On board implementation of the GNU Debugger Server protocol (no need for OpenOCD) works with stock arm-none-eabi-gdb (no patches or plugins needed)
  • Automatic detection of the Device Under Test (no need for config files)
  • Frontend Level shifter. Usable with targets that run on voltages as low as 1.7V and as high as 5V.

In efforts to demystify ARM programming, you are now able to do the following applications while using a Black Magic Probe:

  • Interrupt program
  • Inspect and modify registers and variables
  • Watch variables (the program gets interrupted and reports a variable value change)
  • Breakpoints (you can set a point in your code that will cause the program to stop as soon as it is reached)
  • Call stack and backtrace (you can see what functions, with which parameters brought us to the current point and state of the program)
  • Disassembly (see the machine code and find out exactly what your program is doing)
  • Dump memory (download the RAM and/or flash content to a file)

1Betsy & Black Magic was available as an early bird combo for $65. The campaign has exceeded its $10,000 goal with $47,841 and should be delivering rewards now. More technical details can be reached at the campaign and the official website.