Mcu category

Twiz – Tiny Wireless IMUs

Tiny Wireless IMUs – 100% open & autonomous 9DoF motion sensor using BLE to control anything from your [objects] motion ! by Drix @ hackaday.io:

We looked for tiny, autonomous, easy to use, and 9 Degrees of Freedom IMU, but none of the available wireless motion sensors were affordable enough to really unlock creativity, so we built one.

Twiz – Tiny Wireless IMUs – [Link]

MP3 Module & RTC DS1307 Shield For 28/40 Pin PIC Development Board

MP3 Shield has been designed for various applications related to voice record and play using MP3 module with memory card storage, this shield can be used as standalone mode or Digital mode by serial interface. In standalone mode it can play 16 messages with couple of other functions, Standalone operation possible by connecting resistors and push switches on ADC pins of the module check data sheet for switch connections. Digital mode provides full control of messages with serial interface. Shield also has DS1307 RTC on board to develop a taking clock or other time related applications. Board has dual audio outputs, single channel 3W direct speaker output from MP3 Module and On board 5W Stereo Amplifier based on BA5406 provided to Amplify low audio signal coming from MP3 module. 4 Tact switch with open header connector can be interface to any port of micro-controller using female to female wire harness. RC6, RC7 and RC5 pin connected to micro-controller for serial interface. DS1307 RTC pins are connected to RA0 and RA1 Port pins. Refer to datasheet for Module Serial Interface, switch connections circuit for stand-alone mode.

MP3 Module & RTC DS1307 Shield For 28/40 Pin PIC Development Board – [Link]

Open-V, The Open Source RISC-V 32bit Microcontroller

Open source has finally arrived to microcontrollers. Based on RISC-V instruction set, a group of doctoral students at the Universidad Industrial de Santander in Colombia have been working on an open source 32-bit chip called “Open-V“.

Onchip, the startup of the research team, is focusing on integrated systems and is aiming to build the first system-on-chip designed in Colombia. The team aims to contribute to the growth of the open source community by developing an equivalent of commercial microcontrollers implemented with an ARM M0 core.

The Open-V is a 2x2mm chip that hosts built-in peripherals which any modern microcontroller could have. Currently, it has ADC, DAC, SPI, I2C, UART, GPIO, PWM, and timer peripherals designed and tested in real silicon. Other peripherals, such as USB 2, USB3, internal NVRAM and/or EEPROM, and a convolutional neural network (CNN) are under development.

Open-V Chip Specifications

  • Package: QFN-32
  • Processor RISC-V ISA version 2.1 with 1.2 V operation
  • Memory: 8 KB SRAM
  • Clock: 32 KHz – 160 MHz, Two PLLs, user-tunable with muxers and frequency dividers
  • True Random Number Generator: 400 KiB/s
  • Analog Signals: Two 10-bit ADC channels, each running at up to 10 MS/s, and two 12-bit DAC channels
  • Timers: One general-purpose 16-bit timer, and one 16-bit watch dog timer (WDT)
  • General Purpose Input/Ouput: 16 programmable GPIO pins with two external interrupts
  • Interfaces: SDIO port (e.g., microSD), two SPI ports, I2C, UART
  • Programming and Testing
    • Built-in debug module for use with gdb and JTAG
    • Programmable PRBS-31/15/7 generator and checker for interconnect testing
    • Compatible with the Arduino IDE

RISC-V is a new open instruction set architecture (ISA) designed to support architecture research and education. RISC-V is fully available to public and has advantages such as a smaller footprint size, support for highly-parallel multi-core implementations, variable-length instructions to support an optional dense instruction, ease of implementation in hardware, and energy efficiency.

Open-V core provides compatibility with Arduino, so it is possible to benefit from its rich resources. Also when finish preparing the first patch, demos and tutorials will be released showing how Open-V can be used with the Arduino and other resources.

The Open-V microcontroller uses several portions of the Advanced Microcontroller Bus Architecture (AMBA) open standard for on-chip interconnection. This makes any Open-V functional block, such as the core or any of the peripherals, easy to incorporate into existing chip designs that also use AMBA. We hope this will motivate other silicon companies to release RISC-V-based microcontrollers using the peripherals they’ve already developed and tested with ARM-based cores.
We think buses are so important, we even wrote a paper about them for IEEE LASCAS 2016.

Open-V Development Board Specifications

Onchip team are also developing a fully assembled development board for their Open-V. It is a 55 mm x 30 mm board that features everything you need to get start developing with the Open-V microcontroller, include:

  • USB 2.0 controller
  • 1.2 V and 3.3 V voltage regulators
  • Clock reference
  • Breadboard-compatible breakout header pins
  • microSD receptacle
  • Micro USB connector (power and data)
  • JTAG connector
  • 32 KB EEPROM
  • 32-pin QFN Open-V microcontroller

Compared with ARM M0+ microcontrollers, power and area simulations show that a RISC-V architecture can provide similar performance. This table demonstrates a comparison between Open-V and some other chipsets.

OnChip Open-V microcontroller designs are fully open sourced, including the register-transfer level (RTL) files for the CPU and all peripherals and the development and testing tools they use. All resources are available at their GitHub account under the MIT license.

We think open source integrated circuit (IC) design will give the semiconductor industry the reboot it needs to get out of the deep innovation rut dug by the entrenched players. Just like open source software ushered in the last two decades of software innovation, open source silicon will unleash a flood of hardware innovation. The Open-V microcontroller is one concrete step in that direction.

A crowdfunding campaign with $400k goal has been launched to support manufacturing of Open-V. The chip is available for $49 and the development board for $99. There are also many options and offers.

NetWorker – an advanced web server with PIC18F67J60

rs-online.com have published an advanced webserver project based on PIC18F67J60 microcontroller.

An Internet connection would be a valuable addition to many projects, but often designers are put off by the complexities involved. The ‘NetWorker’, which consists of a small printed circuit board, a free software library and a ready-to-use microcontroller-based web server, solves these problems and allows beginners to add Internet connectivity to their projects. More experienced users will benefit from features such as SPI communications, power over Ethernet (PoE) and more.

NetWorker – an advanced web server with a microcrontroller – [Link]

ATtiny85 Tiny OLED Watch

An ATtiny85 and a 64×48 OLED display hand clock:

This is the third in my series of minimalist watches based on the ATtiny85. This version displays the time by drawing an analogue watch face on a miniature 64×48 OLED display. It uses a separate crystal-controlled low-power RTC chip to keep time to within a few seconds a month, and puts the processor and display to sleep when not showing the time to give a battery life of over a year.

ATtiny85 Tiny OLED Watch – [Link]

RELATED POSTS

Sound to RC Servo Driver

This project is designed for Animatronics and Puppeteer applications, however it can be used in other applications like sound responsive toys, robots etc. Especially this project helps to move the jaw or mouth of animatronics creature.

The project moves RC servo once receives any kind of sound.  Rotation angle depends on sound level, more the sound level more the movement. Movement of the servo is proportional to sound level.

Circuit has 4 channel servo drivers, First channel is driven by sound, and rest 3 RC servos controlled by on board trimmer potentiometer, these 3 channels helps to drive other movement of animatronics figure.

Sound Received by microphone is convered to DC voltage, PIC16F72 microcontroller converts DC voltage into RC PWM signal. Circuits works with 6V DC , advisable to use battery for low jitter.

Sound to RC Servo Driver – [Link]

Cheap ARM Cortex-m0 MCU Printed on Plastic Costs as low as 0.01$

Flexible electronics is one of the emerging technologies with the rise of connected things in IoT age. This increases the need of low cost electronics to use.

Photo Courtesy of PragmatiIC

PragmatIC the specialized company in low cost flexible electronics wants to enable trillions of “smart objects” to sense and communicate with their environment, but the problem is: to turn ordinary objects —like clothing, documents, or packaging of consumer goods— into smart objects, the price needed for this is far below the cheapest silicon chip. Moreover, the thickness of silicon represents another obstacle to integrate electronics seamlessly into products. The PragmatIC’s approach tries to solve these problems.

Photo Courtesy of PragmatiIC

Pragmatic print electronics on a piece of 10-µm-thick plastic which is thinner than a human hair.

PING (Printed Intelligent NFC Game cards and packaging) and a bottle with illuminating brand are examples of use cases of Pragmatic solution.

Back to the title of this news, PlasticARM is the new project started 2 years earlier in collaboration with ARM to implement a fully functional 32-bit ARM Cortex-M0 MCU on 10-µm-thick flexible plastic.

Image Source: Charbax

Charbax from ARMDevices.net made an interview with the CEO, Scott, during IDTechEx Show. Scott said that the last version of PlasticARM is printed on 1 square CM area and the next version will have the half size.

Cris —a VP Technology in ARM— holding Plastic ARM. Image Source: Charbax’s interview

Source: ARMdevices

Temperature Controlled Fan With LED Status

This is a simple fan controller with single LED temperature status light using an ATtiny85 microcontroller and DS18B20 temperature sensor. The fan is turned on/off based on temperature sensed and the controller goes in sleep mode when the temperature drop below a predefined threshold.

Simple ATtiny85 fan controller to turn a fan on/off based on temperature. Includes an LED as a temperature indicator. LED is dim at start of fan on temperature and blinks when above a max temperature. Fan is not PWM controlled since I am using a small 5V fan which is quiet running at 100%. The controller is in sleep state while the temperature is below the minimum threshold and wakes up every ~8 seconds to recheck the temperature. When temperature is above minimum threshold, the controller will stay awake checking every second till the temperature falls below the minimum threshold. The code uses ds18b20 library by Davide Gironi.

Temperature Controlled Fan With LED Status – [Link]

Wooden Digital Clock is controlled over WiFi

androkavo @ instructables.com build a nice looking wooden clock that is able to show time, temperature, humidity and also it has alarm. The clock is controlled through your web browser using wifi connectivity and it also has a vibration sensor to stop the alarm.

Wooden Digital Clock is controlled over WiFi – [Link]

µduino, The Smallest Arduino Ever

A new member to Arduino compatible devices is just here, the newest yet the smallest Arduino ever created, µduino!Believing that it is enough to include some bulky devices in our applications, the team behind µduino is trying to provide a shrinkified device that can be included anywhere. With the size of  12mm (0.5 inches) x 12mm, µduino is considered the smallest Arduino compatible device that compete with other similar microcontroller boards with power saving .

The µduino makes use of the power of the ATMEGA32U4 chip found in the Arduino Leonardo (a board over 20 times larger), offering 20 I/O ports, including PWM and ADC ports! In addition, the µduino can be powered by batteries or directly by micro-USB.

A list of µduino specifications is here:

  • ATMEGA32U4 microcontroller
  • 6x Analog I/O ports
  • 14x Digital I/O ports (including Rx/Tx)
  • Status LED
  • 5V voltage regulator (accepts up to 16V DC)
  • 6-pin ICSP programming ports (load custom bootloaders, program other boards, etc)
  • 2x 5V ports
  • 2x ground ports
  • 1x Analog reference voltage port
  • Reset button
  • 16 MHz precision crystal oscillator
  • MicroUSB port for easy programming and prototyping
  • 2x mounting holes (can be sewn into clothing)

Despite its small size, µduino is still powerful and capable to be included in many applications performing as full size Arduino boards. µduino team are planning to run a crowdfunding campaign on CrowdSupply but it is not launched yet. You can sign up here to receive more updates about µduino once launched.