Tag Archives: ESR

MESR-100 ESR meter review and teardown


Parekh of Hacked Gadgets did a teardown of a MESR-100 ESR meter:

I purchased a MESR-100 Meter from eBay for around $55 USD shipped to my door in Winnipeg (Canada). The meter came well packaged in a retail box, this is a nice change from many other items from China that are simply wrapped in bubble wrap and stuffed into a padded envelope. Inside the box was the meter, two short meter leads and a manual. Pressing the red power button for a few seconds powers the meter, it is ready to use after about 3 seconds. The display is a backlit LCD display, it does appear that the backlight is on all the time. The display is nice and bright and has a good viewing angle, there are two hot spots near the bottom of the display which is probably due to the location of the backlight LEDs but it doesn’t effect display readability.


MESR-100 ESR meter review and teardown – [Link]

Measure Capacitor ESR with an Oscilloscope and Function Generator

This video discusses how to measure the ESR (equivalent series resistance) of a capacitor using an oscilloscope and function generator. All of the capacitors tested in this video were 220uF electrolytic caps. In reality, the resistance in the plates of a dried out electrolytic capacitor can’t be modeled as a simple series resistor, but for the purposes of identifying good from bad, this simplification works fine.

Measure Capacitor ESR with an Oscilloscope and Function Generator – [Link]

Dr Brown’s capacitor ESR tester


Rupert Hirst writes:

I finally got round to making my capacitor ESR tester this week after finding a nice simple 5 transistor version by EEVBlog member Jay_Diddy_B. Unfortunately, for me, the design was only SMD so, I decided to replicate his schematic in Eagle PCB using a through hole component design.


Dr Brown’s capacitor ESR tester – [Link]

Do you utilize ceramic capacitors for power supply filtering?

50 total views, no views today


Thanks to their very low equivalent serial resistance (ESR), they provide a very worth function in power supply parts of various devices. In many cases, there´s no need to add any other types of filtering capacitors anymore. 

SMD ceramic capacitors are nowadays commonly available in relatively very high capacities of units to tens of uF, while keeping small dimensions (0603 – 1210). There are also available higher capacities in bigger packages, but the offer of producers is especially reach at these small packages (0603-1210) and prices are significantly better in comparison to a recent past.

Why to use a ceramic capacitor? First, it has a substantially lower value of ESR than electrolytic capacitors and also lower than tantalum ones. This is reflected in low losses and outstanding filtering properties even at high frequencies and high currents, what is especially beneficial at power supply of fast semiconductors and in switch-mode power supplies. Low power consumption of modern components enables to decrease an overall capacity of capacitors in a power supply part, that´s why in many cases a few uFarads are sufficient. A big advantage is a long lifetime too, because they don´t contain any liquid electrolyte. Naturally, in devices, where high current peaks occur, it would be economically inefficient to use ceramic capacitors only. In such cases a combination of ceramic and tantalum or electrolytic capacitors is ideal.

In our offer can be found more types, also a novelty in our offer – 2,2uF/10V/0805 from the X7R mass from company YAGEO (please note a significantly lower price at purchase of 50 pcs and more). The X7R mass ensures very good properties in a wide range of temperatures and voltages. Detailed information will provide you the X7R, X5R and Y5V documents. In case of interest about any YAGEO component, please contact us at info@soselectronic.com

Do you utilize ceramic capacitors for power supply filtering? – [Link]

Calculating the Useful Life of Capacitors

34 total views, no views today


powerguru.org writes:

Useful life (also termed service life or operational life) is defined as the life achieved by the capacitor without exceeding a specified failure rate. Total failure or failure due parametric variation is considered to constitute the end of the useful life.

Depending on the circuit design, device failure due to parametric variation does not necessarily imply equipment failure. This means that the actual life of a capacitor may be longer than the specified useful life. Data on useful life has been obtained from experience gained in the field and from accelerated tests.

The useful life can be prolonged by operating the capacitor at loads below the rated values (e.g. lower operating voltage, current or ambient temperature) and by appropriate cooling measures. In addition to the standard type series, EPCOS types are available with useful life ratings specially matched to customer specifications.

Calculating the Useful Life of Capacitors – [Link]

LCFesR 4.0 meter – LC / LCF / LCR / ESR meter

Le Hung writes:

LCFesR 4.0 unit is a precise, wide range LC / LCF / LCR / ESR meter (tester / checker) that measures inductance (L), capacity (C), frequency (F), small resistance (R) and equivalent series resistance (ESR) of a capacitor inside an electronic circuit (in-circuit). The meter can be built easily with one- or double-sided PCB and available electronic components (DIY). It’s functions are base on an further developed AVR ATMega88PA-PU microprocessor. Professional KIT is also available.

LCFesR 4.0 meter – LC / LCF / LCR / ESR meter – [Link]

Monitoring battery voltage to calculate capacity with an Arduino

Eric built himself a battery monitoring system based on the ATmega328 Development Kit. He drained a 9V battery with 100mA of current and monitored the voltage drop until total depletion. He used this data to estimate how much time is left until depletion – [via]

The 100mA constant load was chosen because my ProtoStack Arduino Clone with LCD draws about 92mA and I wanted to write a sketch to display a battery bar and the approximate hours battery life left. Since all batteries have an internal equivalent series resistance (ESR), it is important to take that into account when only using a battery’s voltage to monitor its state of charge. Since we discharged the battery through a load that is similar to the ProtoStack board with LCD, the ESR of the battery has automatically been accounted for in the voltage measurements.

Monitoring battery voltage to calculate capacity with an Arduino – [Link]

Ceramic, tantalum, and electrolytic capacitor comparison

dangerousprototypes.com writes:

Arhi made use of his precision LCR meter to measure capacitance and ESR values of ceramic, tantalum, and electrolytic capacitors. He made his measurements at various frequencies to help him graph the changes to the values over a wide frequency range.

From the graph it can be extrapolated that the ceramic capacitors have the lowest ESR values at any frequency up to the measured 100KHz. While the tantalum capacitors seem to be the most stable of the group.

Ceramic, tantalum, and electrolytic capacitor comparison – [Link]