Tag Archives: lithium

Researchers From NREL Discovered New Method To Develop Rechargeable Magnesium-metal Battery

A team of researchers from National Renewable Energy Laboratory (NREL) has discovered a new method for developing a rechargeable non-aqueous magnesium-metal battery. A proof-of-concept paper published in Nature Chemistry. It described how the scientists pioneered a method to enable the reversible chemistry of magnesium metal in the noncorrosive carbonate-based electrolytes and tested the concept in a prototype cell. The technology possesses many high potential advantages over conventional lithium-ion batteries. Some upgrades over Li-ion battery with this new kind of battery will be, higher energy density, greater stability, and lower cost.

magnesium-metal batteries
magnesium-metal batteries

NREL researchers Seoung-Bum Son, Steve Harvey, Andrew Norman, and Chunmei Ban are co-authors of the Nature Chemistry white paper, “An Artificial Interphase Enables Reversible Magnesium Chemistry in Carbonate Electrolytes” working with a Time-of-flight secondary ion mass spectrometry. The device enables them to investigate material degradation and failure mechanisms at the micro- to nano-scale.

Chunmei Ban, a scientist in NREL’s Materials Science department and corresponding author of the paper, said,

Being scientists, we’re always thinking: what’s next? The dominant lithium-ion battery technology is approaching the maximum amount of energy that can be stored per volume, so there is an urgent need to explore new battery chemistries that can provide more energy at a lower cost.

Seoung-Bum Son, a former NREL postdoc and scientist at NREL and first author of the paper, thinks this finding will provide a new avenue for magnesium battery design.

An electrochemical reaction powers a battery as ions flow through a liquid (electrolyte) from the negative electrode (cathode) to the positive electrode (anode). For batteries using Lithium, the electrolyte is a salt solution containing lithium ions. It’s also important to make the chemical reaction reversible for the battery to recharge again.

Magnesium (Mg) batteries theoretically contain almost twice as much energy per volume as of lithium-ion batteries. But previous research confronted an obstacle. The chemical reactions of the conventional carbonate electrolyte created a layer on the surface of magnesium that prevented the battery from recharging. The magnesium ions could flow in a reverse direction through a highly corrosive liquid electrolyte, but that blocked the possibility of a successful high-voltage magnesium battery.

The researchers developed an artificial solid-electrolyte interphase from polyacrylonitrile and magnesium-ion salt that protected the surface of the magnesium anode. This protected anode and significantly improved performance of the cell.

In addition to being more readily available than lithium, magnesium has other advantages over the more established battery technology. Firstly, magnesium releases two electrons which is higher lithium’s one, thus giving it the potential to deliver nearly twice as much energy as lithium. And second, magnesium-metal batteries do not experience the growth of crystals that can cause short circuits and consequently dangerous overheating and even fire, making magnesium batteries much safer than lithium-ion batteries.

Newly Developed Internal Temperature Sensor For Li-ion Battery Enables 5x Faster Charging

Researchers at the University of Warwick in the UK have developed sensors which measure the internal temperature and electrode potential of Lithium batteries. The technology is being developed by the Warwick Manufacturing Group (WMG) as a part of a battery’s normal operation. More intense testings have been done on standard commercially available automotive battery cells.

Researchersdeveloped a sensor to measure the internal termperature and electrode potential of lithum batterry
Researchers developed a sensor to measure the internal temperature and electrode potential of lithium battery

If a battery overheats it becomes a risk for critical damage to the electrolyte, breaking down to form gases that are both flammable and can cause significant pressure build-up inside the battery. On the other hand, overcharging of the anode can lead to Lithium electroplating, forming a metallic crystalline structure that can cause internal short circuits and fires. So, overcharging and overheating of a Li-ion battery is hugely damaging to the battery along with the user.

The researchers at Warwick developed miniature reference electrodes and Fiber Bragg Gratings (FBG) threaded through a strain protection layer. An outer coat of Fluorinated Ethylene Propylene (FEP) was applied over the fiber, ensuring chemical protection from the corrosive electrolyte. The end result is a sensor which has direct contact with all the key components of the battery. The sensor can withstand electrical, chemical and mechanical stress faced during the normal operation of the battery while still giving accurate temperature and potential readings of the electrodes.

The device includes an in-situ reference electrode coupled with an optical fiber temperature sensor. The researchers are confident that similar techniques can also be developed for use in pouch cells. WMG Associate Professor Dr. Rohit Bhagat said,

This method gave us a novel instrumentation design for use on commercial 18650 cells that minimizes the adverse and previously unavoidable alterations to the cell geometry,

The data from these internal sensors are much more precise than external sensing. This has been shown that with the help of these new sensors, Lithium batteries that are available today could be charged at least five times faster than the current rates of charging.

This could bring huge benefits to areas such as motor racing, gaining crucial benefits from being able to push the performance limits. This new technology also creates massive opportunities for consumers and energy storage providers.

Supercapacitors Surpassing Conventional Batteries

Researchers at the University of Central Florida have been looking for alternatives for lithium rechargeable batteries which are largely used in every device.

Using two-dimensional (2D) transition-metal dichalcogenides (TMDs) capacitive materials, they are building a new supercapacitor that overcomes the performance of conventional lithium battery and replaces its efficiently.

Transition metal dichalcogenide monolayers (TMDs) are atomically thin semiconductors of the type MX₂, with M a transition metal atom and X a chalcogen atom. One layer of M atoms is sandwiched between two layers of X atoms.

TMDs are considered as promising capacitive materials for supercapacitor devices since they provide a suitable current conduction path and a robust large surface to increase the structure’s high energy and power density.

Researchers have developed “high-performance core/shell nanowire supercapacitors based on an array of one-dimensional (1D) nanowires seamlessly integrated with conformal 2D TMD layers. The 1D and 2D supercapacitor components possess “one-body” geometry with atomically sharp and structurally robust core/shell interfaces, as they were spontaneously converted from identical metal current collectors via sequential oxidation/sulfurization” according to the research paper.

The new prototype is said to be charged 30,000 times without any draining, 20 times the lifetime of an ordinary battery.

“You could charge your mobile phone in a few seconds and you wouldn’t need to charge it again for over a week,” says UCF postdoctoral associate Nitin Choudhary.

This research was published in the NANO science journal, you can check the scientific paper here.

60V-input battery charger; Pb-acid & Li-ion charge algorithms up to 20A

160901edne-linear4013
LTC4013 is a highly integrated, high voltage multi-chemistry synchronous step-down battery charger controller. With a wide input voltage range that spans up to 60V, the LTC4013 uses temperature-compensated 3- and 4-stage charge algorithms to efficiently charge 12V and 24V lead-acid batteries. By Graham Prophet @ edn-europe.com

Alternatively, the LTC4013 will charge a multicell Lithium-based battery stack with float voltages near to the input supply. Mode pins define the float voltage and charge algorithm. Charge current is precision regulated to ±5% and programmable with a single resistor up to 20A (depending on the selection of external components). The LTC4013 features user-adjustable maximum power point tracking (MPPT) circuitry that enables simple power optimization in the case of power-limited sources such as solar panels. The MPPT open-circuit method corrects for panel temperature changes without the inconvenience of adding a solar panel temperature sensor. Applications include portable medical instruments, monitoring equipment, battery backup systems, industrial handhelds, industrial lighting, military equipment, ruggedized notebooks/tablet computers, plus remote powered communication and telemetry systems.

60V-input battery charger; Pb-acid & Li-ion charge algorithms up to 20A – [Link]

Lithium ion batteries that work best at 95°C

20160822142526_li-ion-solide

Numerous laboratories are working towards reducing or eliminating the accidental risks of Li ion batteries by working on solid electrolytes. Researchers at ETH at Zurich are developing unique solid materials which even when brought to high temperatures will not ignite. by Denis Meyer @ elektormagazine.com:

This represents a double advancement over current Li ion batteries which contain inflammable gel electrolytes, because not only does the fire risk disappear, but constraints over form-factor are also much less.

Lithium ion batteries that work best at 95°C – [Link]

DIY USB power bank from laptop battery

Unbenannt-5

DIY USB power bank made from an old laptop battery @ DoItYourselfGadgets:

A situation many can relate to: an empty smartphone battery and no outlet around! That’s exactly why I recycled an old laptop battery into an USB power bank.
This article will show you the basic powerbank circuit consisting of Lithium cell charging circuit, boost converter and toggle switch as well as my improved version with self activating boost converter and LED status indicator and homemade housing.

DIY USB power bank from laptop battery – [Link]

Disconnect circuit for 12 volt lead acid and lithium batteries

low_voltage_cutoff_1c_crop

KA7OEI designed a circuit that disconnects the battery when it over-discharges. He writes:

The avoidance of overcharging is usually pretty easy to avoid: Just use the appropriate charging system – but overdischarge is a bit more difficult, particularly if the battery packs in question don’t have a “protection board” with them.

Lead acid batteries (almost) never come with any sort of over-discharge protection – one must usually rely on the ability of the device being powered to turn itself off at too-low a voltage and hope that that threshold is sensible for the longevity of a 12 volt battery system.

Disconnect circuit for 12 volt lead acid and lithium batteries – [Link]

Get a constant +5V output by switching between a +5V input and a single-cell LI+ rechargeable cell

an_maxim_an5818

App note from Maxim Integrated on providing smooth power from two sources. Link here (PDF)

Design provides a simple method for maintaining an uninterrupted +5V even while switching between the external +5V supply and a rechargeable single-cell Li+ battery.

Get a constant +5V output by switching between a +5V input and a single-cell LI+ rechargeable cell – [Link]