Tag Archives: TI

TI introduces world’s first multichannel inductance-to-digital converters

TI introduces world's first multichannel inductance-to-digital converters with four new devices in the LDC1614 family (PRNewsFoto/Texas Instruments)
TI introduces world’s first multichannel inductance-to-digital converters with four new devices in the LDC1614 family (PRNewsFoto/Texas Instruments)

Texas Instruments (TI) announced the world’s first multichannel inductance-to-digital converters (LDCs). The four new devices in the LDC1614 family expand the innovative LDC portfolio, a data converter category that TI first introduced in 2013. The devices offer two or four matched channels and up to 28-bit resolution in a single integrated circuit (IC).

The combination of precision and multichannel functionality will allow engineers to design high dynamic range position and motion sensing solutions with simpler system designs and reduced cost. Unlike other technologies, LDC-enabled inductive sensing employs low-cost, high-reliability inductors as sensors, which can be located remotely from the IC. By integrating up to four channels in a single IC, the LDC1614 family allows designers to distribute sensors throughout a system, while centralizing electronics on fewer printed circuit boards (PCBs). This can benefit precision linear or rotational sensing and metal detection in a variety of end equipment including white goods, printers, cameras and automotive infotainment consoles.

TI introduces world’s first multichannel inductance-to-digital converters – [Link]

Single-cell 5-A Li-Ion battery charger with MaxCharge™ technology

 

BQ25890

TI’s new bq25890, bq25892, and bq25895 5A chargers with TI’s MaxCharge™ technology charge your mobile device faster while keeping your device cooler. The switch-mode chargers can charge a 1-S Li-Ion cell to 80% capacity in 30 minutes, while traditional devices only reach 30%. The I2C-controlled chargers’ high efficiency and thermal management result in the fastest, safest and coolest charging capability.

Key features and benefits

  • Fast charging to high capacity battery with up to 5A high charging current
  • Optimized for high voltage input: >91% charging efficiency at 3A with 9V input
  • Innovative Input Current Optimizer (ICO) to maximize input power without overloading adapter
  • Resistance compensation from charger output to cell terminal to enhance power delivery to battery
  • Integrated ADC for charging system monitoring

Single-cell 5-A Li-Ion battery charger with MaxCharge™ technology – [Link]

Ultra Low Power Wireless IoT Platform

TexasSimplelink_300

by elektor.com:

TEXAS Instruments has announced the new SimpleLink ultra-low power wireless MCU platform. The platform has been designed to use so little energy it can be powered from harvested energy or will run for years on a coin cell. For versatility the platform supports multiple wireless connectivity standards using a single-chip and identical RF design. The SimpleLink ultra-low power platform supports Bluetooth low energy, ZigBee, 6LoWPAN, Sub-1 GHz, ZigBee RF4CE and proprietary modes up to 5 Mbps.

The first members of the SimpleLink devices to be introduced are the CC2640 which supports Bluetooth Smart and the CC2630 for 6LoWPAN and ZigBee. The CC2650 wireless MCU supports multiple 2.4 GHz technologies including Bluetooth Smart, 6LoWPAN, ZigBee and RF4CE. The support for such a wide range of radio standards helps future-proof designs and gives the ability to configure a chosen technology at the time of installation in the field. Planned for introduction later in 2015 are the CC1310 for Sub-1 GHz operation and the CC2620 for ZigBee RF4CE.

Ultra Low Power Wireless IoT Platform – [Link]

The Texas PRU Cape

Pru2

by elektor.com:

In a bid to encourage greater use of TI’s Programmable Real-time Unit (PRU) built into the Sitara AM335x and AM437x family of devices which power the BeagleBone Black development board Texas have announced the PRU cape. The PRU is made up of dual 200 MHz coprocessors, implementing a low-latency subsystem optimized for deterministic, real-time processing allowing direct access to I/Os. It would be fair to say that this capability is seldom used by BeagleBone developers because it has been found to be complex to program.

The Texas PRU Cape – [Link]

HDC1000 – Low Power, High Accuracy Humidity Sensor with Integrated Digital Temperature Sensor

fbd_snas643

by ti.com:

TI’s new HDC1000 integrated humidity and temperature sensor provides high accuracy and low power in a small, dust-resistant package.

Designers of building control equipment can implement accurate, energy-saving climate control in small spaces, while designers of home appliances and consumer goods can easily add humidity-sensing capabilities to their products.

High accuracy, low power

The HDC1000 consumes only 1.2 µA average current when measuring relative humidity and temperature at 11-bit resolution, once per second, extending battery life in remote applications.

HDC1000 – Low Power, High Accuracy Humidity Sensor with Integrated Digital Temperature Sensor – [Link]

TI announces 1st transistor radio, October 18, 1954

regency_transistor_radio

by Suzanne Deffree @ edn.com:

Texas Instruments announced plans for the Regency TR-1, the first transistor radio to be commercially sold, on October 18, 1954.

The move was a major one in tech history that would help propel transistors into mainstream use and also give new definition to portable electronics.

TI was producing germanium transistors at the time, but the market had been slow to respond, comfortable with vacuum tubes.

However, the use of transistors instead of vacuum tubes as the amplifier elements meant that the device was much smaller, required less power to operate, and was more shock-resistant. Transistor use also allowed “instant-on” operation because there were no filaments to heat up.

TI announces 1st transistor radio, October 18, 1954 – [Link]

Beehive scale uses inductive sensing

by Paul Watson:

This beehive weight scale uses a TI LDC1000EVM inductance processor circuit to measure the weight of a Beehive, by detecting the the change in resonance due to a change in inductance, as the change in weight on the scale occurs. The processor sensed and measured differences; outputs are sent to a collocated laptop computer via a USB port and displayed by the TI software GUI on the screen. For this design concept, it was decided to design for a maximum of 160 lbs. The detailed PDF available below shows a range scale of desired performance, however the LDC1000 was not well understood by me at first, so this concept was a design to fit the unknown performance of the LDC1000, but adjusted to make it work.

Beehive scale uses inductive sensing – [Link]

Clock with retro display

HPDL-1414-clock-top-600x414

Marcus Linderoth built a clock using a TI MSP430g2553 microcontroller and a HPDL-1414 display, that is available at Github:

After having ported Contiki to the Launchpad, I was eager on doing something with it. I built this simple clock with a vintage HPDL-1414 “smart four-character 16-segment alphanumeric

Customize Power-Management Designs With Editing/Simulation Environment

0312nptiwebench

by electronicdesign.com:

With Texas Instruments’ WEBENCH Schematic Editor, engineers can customize power-management designs and simulate the circuit created within the WEBENCH environment. According to the company, the new feature reduces design and verification time from hours to minutes. The editing and simulation package maintains a library of over 40,000 components. As a result, it’s possible to incorporate multiple mixed output capacitors, filtering, board parasitics, and snubber circuits into WEBENCH power-supply designs. Then those customized power designs can be simulated (using the WEBENCH Power Designer’s Spice simulator) before they’re exported to CAD development platforms like Cadence OrCAD Capture CIS, Mentor Graphics Xpedition xDX Designer, CADSoft EAGLE, and Altium formats (e.g., Altium Designer). The WEBENCH environment consists of online tools such as Designer and Architect that enable end-to-end analog circuit design.

Customize Power-Management Designs With Editing/Simulation Environment – [Link]

TI’s smallest, most efficient HD pico chipset 0.3″ HD TRP DLP

TI-2014-0.3-inch-TRP-pico-DLP-chipset

Texas Instruments unveiled a new Tilt & Roll Pixel (TRP) DLP pico chipset. According to TI, this is the smallest (at 0.3″, which is strange because the previous model was 0.2″) and most efficient DLP chip ever. It support HD resolutions (probably 720p) and can be used in pico projectors and wearable displays, augmented reality displays and other applications. [via]

The new Texas Instruments 0.3″ HD Tilt & Roll Pixel (TRP) DLP® Pico™ chipset is TI’s smallest, most power-efficient HD micro-mirror array and can generate 720p displays from compact applications, including tablets, smartphones, accessories, wearable displays, augmented reality displays, interactive surface computing, digital signage and control panels. The chipset delivers significantly higher levels of brightness and power efficiency, allowing developers to create a wide variety of applications and products in smaller form factors than ever before. The chipset’s fast switching speeds of up to thousands of times per second enable the world’s smallest true color RGB engines with 120Hz video performance.

TI’s smallest, most efficient HD pico chipset 0.3″ HD TRP DLP – [Link]