Home Blog  





7 Oct 2014

 

Printby linear.com:

The LTC2946 is a high or low side charge, power and energy monitor for DC supply rails in the 0V to 100V range. An integrated ±0.4% accurate, 12-bit ADC and external precision time base (crystal or clock) enables measurement accuracy better than ±0.6% for current and charge, and ±1% for power and energy. A ±5% accurate internal time base substitutes in the absence of an external one. All digital readings, including minimums and maximums of voltage, current and power, are stored in registers accessible by an I²C/SMBus interface. The part’s wide operating range makes it ideal for monitoring board energy consumption in blade servers, telecom, solar and industrial equipment, and advanced mezzanine cards (AMC).

LTC2946 – Wide Range I2C Power, Charge and Energy Monitor - [Link]

9 Jul 2014

 

3350

by linear.com:

The LTC3350 is a supercapacitor charger and backup controller IC that includes all of the features necessary to provide a complete, standalone capacitor-based backup power solution. Many applications require reliable short-term uninterrupted power in the event of a main power failure. Examples include data backup for solid state drives (SSDs) and nonvolatile dual in-line memory modules (NVDIMMs), power fail alarms in medical and industrial applications, as well as a host of other “dying gasp” power fail indicators. The LTC3350 provides all PowerPath control, capacitor stack charging and balancing, and capacitor health monitoring to ensure that the backup system is capable of reliable operation.

LTC3350 – High Current Supercapacitor Backup Controller and System Monitor - [Link]

 

30 Jan 2014

article-2013january-fuel-gauge-ics-simplify-fig1

By Stephen Evanczuk

For circuits relying on lithium-ion cells, determining the amount of charge remaining in a cell requires specialized techniques that can complicate the design of energy-harvesting applications. Engineers can implement these techniques with MCUs and ADCs normally used in these applications, but at the cost of increased complexity. Instead, engineers can easily add this functionality to existing designs using dedicated “fuel-gauge” ICs available from manufacturers including Linear Technology, Maxim Integrated, STMicroelectronics, and Texas Instruments.

Determining the state of charge (SOC) in lithium-ion batteries is essential yet challenging due to the great variability in capacity not only across different cells, but also in the same cell. As a Li-ion cell ages, it loses its ability to store charge. Consequently, even if fully charged, an older cell would deliver usable voltage for a shorter period of time than a newer cell. With any Li-ion cell, SOC varies greatly depending on the temperature and discharge rate, resulting in a unique family of curves for any particular cell (Figure 1).

Fuel-Gauge ICs Simplify Li-Ion Cell Charge Monitoring - [Link]

21 Feb 2012

biolitestove.com writes:

Forget the fuel. Our stoves cook your meals with nothing but the twigs you collect on your journey, eliminating the need for heavy, expensive, polluting petroleum gas. It’s quick to light, fast to boil and clean to use.

Charge your gadgets. By converting heat from the fire into usable electricity, our stoves will recharge your phones, lights and other gadgets while you cook dinner.

Have fun. Like a campfire, you can sit around the CampStove and watch the flames dance as you roast marshmallows and tell stories with friends.

Product Details

  • Powers all USB-chargeable devices including smartphones, LED lights, GPS and many others.
  • Fast to boil.
  • Lights quickly and easily.
  • Burns sticks, pine cones, pellets and other biomass.
  • Folds for easy packing.
  • Packed size: 8.25 x 5″.
  • Weight: 2 Lbs 1 oz / 935 gram

BioLite CampStove – Charge your gadgets in fire - [Link]


23 Sep 2011

Scientists at the University of Washington (USA) have developed a new type of transistor that uses protons instead of electrons for charge transport. It is intended to simplify the interfacing of electronic circuitry to the brains of living organisms, since protons (positively charged hydrogen atoms) and ions are responsible for signal transport between nerve cells. Proton-based transistors are therefore better suited to controlling and monitoring processes in the brain.

The researches discovered that the natural biomaterial chitosan, obtained from squid pens and crab shells, is a good proton conductor. They then used it to fabricate a transistor that can generate proton pulses. The prototype device is a field-effect transistor with a source, gate and drain, but it operates with protons. [via]

Novel transistor uses protons for charge transport - [Link]

26 Aug 2011

Photovoltaic polarizers enable devices to be powered by sunlight

New technology developed by researchers at the UCLA Henry Samueli School of Engineering and Applied Science could finally help solve the problem of smartphones or laptops running down when there is no access to an electrical outlet.

UCLA engineers have created a novel concept for harvesting and recycling energy for electronic devices — one that involves equipping these devices’ LCD screens with built-in photovoltaic polarizers, allowing them to convert ambient light, sunlight and their own backlight into electricity. [via]

Phone LCDs charge … phone batteries! - [Link]



 
 
 

 

 

 

Search Site | Advertising | Contact Us
Elektrotekno.com | Free Schematics Search Engine | Electronic Kits