Send Texts or Make Calls With This Tiny GSM Board

@ blog.tindie.com

This quad band GSM board is claimed to be the worlds smallest of its kind. We have no way to verify this bold claim but let’s all agree that this is a pretty small board that lets you send texts and make calls. The GSM feature is an addition to the OLEDiUNO Cube range that we have mentioned previously on the blog.

Send Texts or Make Calls With This Tiny GSM Board – [Link]

The Next-Generation Semiconductor for Power Electronics

Researchers have demonstrated the high-performance potential of an experimental transistor made of a semiconductor called beta gallium oxide, which could bring new ultra-efficient switches for applications such as the power grid, military ships and aircraft.

The semiconductor is promising for next-generation “power electronics,” or devices needed to control the flow of electrical energy in circuits. Such a technology could help to reduce global energy use and greenhouse gas emissions by replacing less efficient and bulky power electronics switches now in use.

The schematic at left shows the design for an experimental transistor made of a semiconductor called beta gallium oxide, which could bring new ultra-efficient switches for applications such as the power grid, military ships and aircraft. At right is an atomic force microscope image of the semiconductor. (Purdue University image/Peide Ye)

 

The schematic at left shows the design for an experimental transistor made of a semiconductor called beta gallium oxide, which could bring new ultra-efficient switches for applications such as the power grid, military ships and aircraft. At right is an atomic force microscope image of the semiconductor. (Purdue University image/Peide Ye)The transistor, called a gallium oxide on insulator field effect transistor, or GOOI, is especially promising because it possesses an “ultra-wide bandgap,” a trait needed for switches in high-voltage applications.

Compared to other semiconductors thought to be promising for the transistors, devices made from beta gallium oxide have a higher “breakdown voltage,” or the voltage at which the device fails, said Peide Ye, Purdue University’s Richard J. and Mary Jo Schwartz Professor of Electrical and Computer Engineering.

Findings are detailed in a research paper published this month in IEEE Electron Device Letters. Graduate student Hong Zhou performed much of the research.

The team also developed a new low-cost method using adhesive tape to peel off layers of the semiconductor from a single crystal, representing a far less expensive alternative to a laboratory technique called epitaxy. The market price for a 1-centimeter-by-1.5-centimeter piece of beta gallium oxide produced using epitaxy is about $6,000. In comparison, the “Scotch-tape” approach costs pennies and it can be used to cut films of the beta gallium oxide material into belts or “nano-membranes,” which can then be transferred to a conventional silicon disc and manufactured into devices, Ye said.

The technique was found to yield extremely smooth films, having a surface roughness of 0.3 nano-meters, which is another factor that bodes well for its use in electronic devices, said Ye, who is affiliated with the NEPTUNE Center for Power and Energy Research, funded by the U.S. Office of Naval Research and based at Purdue’s Discovery Park. Related research was supported by the center.

The Purdue team achieved electrical currents 10 to 100 times greater than other research groups working with the semiconductor, Ye said.

One drawback to the material is that it possesses poor thermal properties. To help solve the problem, future research may include work to attach the material to a substrate of diamond or aluminum nitride.

The research was based at Discovery Park’s Birck Nanotechnology Center.
Source: Purdue University

LASER TRIGGER FOR CHRONOGRAPH

I finished this laser wall trigger for my HIGH RESOLUTION AND ACCURACY CHRONOGRAPH. The purpose of this device is to generate the trigger start and stop impulses for my chronograph as soon as an object disrupts any of the laser beams.

LASER TRIGGER FOR CHRONOGRAPH – [Link]

A 400W (1kW Peak) 100A Electronic Load Using Linear MOSFETs

Kerry Wong built a 400W/100A electronic load using linear MOSFETs. He writes:

I bought a couple of IXYS linear MOSFETs (IXTK90N25L2) a while ago to test their capabilities when used as electronic load, and the result was quite impressive. So I decided to build another electronic load using both MOSFETs. As you can see in the video towards the end, this electronic load can sink more than 100 Amps of current while dissipating more than 400W continuously and can withstand more than 1kW of power dissipation in pulsed operation mode.

A 400W (1kW Peak) 100A Electronic Load Using Linear MOSFETs – [Link]

Digital Potentiometer using Optical Encoder – 10KOhms

The primary application of the project is to replace the mechanical potentiometer with optical encoder which is long life, accurate, smooth in operation. The simple project has been designed around LS7184 quadrature clock converter IC from LSI semiconductor, AD5220-10 Digital potentiometer from Analog Devices, and optical encoder from Burns.

Quadrature clocks derived from optical encoder, when applied to the A and B inputs of the LS7184, are converted to strings of Clock and an Up/down direction control. These outputs interfaced directly to AD5220-10 Digital Potentiometer IC.

The AD5220-10 contains a single channel, 128 positions, and digitally-controlled 10K ohms variable resistor (VR) device. This device performs the same electronic adjustment function as a potentiometer.

Digital Potentiometer using Optical Encoder – 10KOhms – [Link]

How to Setup an LCD Touchscreen on the Raspberry Pi

circuitbasics.com has a tutorial on how to setup a LCD screen for Raspberry Pi.

In this tutorial, I’ll walk you through the process of installing an LCD touchscreen on the Raspberry Pi, step by step. Many LCD touchscreens for the Raspberry Pi include an image file that you can write to your SD card and get up and running pretty quickly.

How to Setup an LCD Touchscreen on the Raspberry Pi – [Link]

CMOS-TTL QUADRATURE ENCODER USING LS7084

The quadrature LS7084 Module is a CMOS quadrature clock converter. Quadrature clocks derived from optical or magnetic encoders, when applied to the A and B inputs of the LS7084 are converted to strings of a Clock and an Up/down direction control. These outputs can be interfaced directly with standard Up/Down counters for direction and position sensing of the encoder.

Features

  • Supply 5V DC
  • +4.5V to +10V operation (VDD – VSS)
  • On Board Power LED
  • J1 Encoder pulse multiplication ( Jumper JL Close =1X, Jumper JH Close = X4)
  • Header Connector for Encoder Interface
  • X1 and X4 mode selection
  • Programmable output clock pulse width
  • On-chip filtering of inputs for optical or magnetic encoder applications.
  • TTL and CMOS compatible I/Os
  • Up to 16MHz output clock frequency

CMOS-TTL QUADRATURE ENCODER USING LS7084 – [Link]

LTC4380 Overvoltage Protection

Thomas Scherer @ elektormagazine.com writes:

When it comes to protecting sensitive circuitry from potentially damaging over-voltage spikes and supply surges we usually resort to networks of coils, capacitors, resistors and suppression diodes to iron out the transients. The LTC4380 low quiescent current surge stopper IC from Linear Technology goes about it in a different way; it looks out for over-voltage nasties and switches a fast N-channel external series-connected MOSFET to limit the surge. The chip is just 3 mm square and draws very little quiescent current.

LTC4380 Overvoltage Protection – [Link]

SensorTile, An Accurate Development Kit For Biometric Wearables

Valencell, a biometric wearable sensor technology company, in partnership with STMicroelectronics, an electronics and semiconductor manufacturer, announced a new highly accurate and scalable development kit for biometric wearables. The kit combines ST’s compact SensorTile turnkey multi-sensor module with Valencell’s Benchmark biometric sensor system.

The SensorTile is a tiny IoT module (13.5mm x 13.5mm) that features a powerful STM32L4 microcontroller, a Bluetooth Low Energy (BLE) chipset, a wide spectrum of high-accuracy motion and environmental MEMS sensors (accelerometer, gyroscope, magnetometer, pressure, temperature sensor), and a digital MEMS microphone.

The on-board low-power STM32L4 microcontroller makes it work as a sensing and connectivity hub for developing firmware and shipping in products such as wearables, gaming accessories, and smart-home or IoT devices.

Key Features:

  • FCC (ID: S9NSTILE01) and IC (IC: 8976C-STILE01) certified
  • Included in the development kit package:
    • SensorTile module
    • SensorTile expansion Cradle board equipped with audio DAC, USB port, STM32 Nucleo, Arduino UNO R3 and SWD connector
    • SensorTile Cradle with battery charger, humidity and temperature sensor, SD memory card slot, USB port and breakaway SWD connector
    • 100 mAh Li-Ion battery
    • Plastic box for housing the SensorTile cradle and the battery
    • SWD programming cable
  • Software libraries and tools
    • STSW-STLKT01: SensorTile firmware package that supports sensors raw data streaming via USB, data logging on SDCard, audio acquisition and audio streaming. It includes low level drivers for all the on-board devices
    • BLUEMICROSYSTEM1 and BLUEMICROSYSTEM2: STM32Cube expansion software package, supporting different algorithms tailored to the on-board sensors
    • FP-SNS-ALLMEMS1 and FP-SNS-MOTENV1: STM32 ODE functional packs
    • ST BlueMS: iOS and Android demo Apps
    • BlueST-SDK: iOS and Android Software Development Kit
    • Compatible with STM32 ecosystem through STM32Cube support

“Valencell’s Benchmark solution leverages the high accuracy of ST’s MEMS sensor technology along with SensorTile’s miniature form factor, flexibility, and STM32 Open Development Environment-based ecosystem,” said Tony Keirouz, Vice President Marketing and Applications, Microcontrollers, Security, and Internet of Things, STMicroelectronics. “Combined, SensorTile and Benchmark enable wearable makers to quickly and easily develop the perfect product for any application that integrates highly accurate biometrics.”

Integrating ST’s SensorTile development kit with Valencell’s Benchmark sensor technology simplifies the prototyping, evaluation, and development of innovative wearable and IoT solutions. That’s done by delivering a complete Valencell PerformTek technology package, ready for immediate integration and delivery into wearable devices. The collaboration with ST expands on previous work that incorporated the company’s STM32 MCUs and sensors into Valencell’s Benchmark sensor system.

“Working with ST has allowed us to bring together the best of all sensors required to support the most advanced wearable use cases through our groundbreaking Benchmark sensor system,” said Dr. Steven LeBoeuf, president and co-founder of Valencell.

The kit is in volume production and is available for about $80. You can order it and get more information and technical details through the official page.

Source: ElectronicSpecifier

RGBdigit clock

by Lucky @ elektormagazine.com build a LED display clock able to display temperature, humidity and air pressure. He writes:

What do you do when you want to design ‘something’ with a vintage or modern display? A clock of course, and this is our first design with RGBDigits: multi-colour 7-segment displays. With a BME280 breakout board attached it will also display temperature, humidity and air pressure. The clock is controlled by an ESP12 module, which makes it possible to synchronise the clock with an internet time server, change the clock settings from any mobile device or computer in the network, or transmit sensor data via Wi-Fi.

RGBdigit clock – [Link]