World’s First 1,000-Processor Chip

kilocore_chipby Andy Fell:

A microchip containing 1,000 independent programmable processors has been designed by a team at the University of California, Davis, Department of Electrical and Computer Engineering. The energy-efficient “KiloCore” chip has a maximum computation rate of 1.78 trillion instructions per second and contains 621 million transistors. The KiloCore was presented at the 2016 Symposium on VLSI Technology and Circuits in Honolulu on June 16.

World’s First 1,000-Processor Chip – [Link]

SparkFun Battery Babysitter

The SparkFun Battery Babysitter is an all-in-one single-cell Lithium Polymer (LiPo) battery manager. It’s half battery charger, half battery monitor, and all you’ll ever need to keep your battery-powered project running safely and extensively.

The Battery Babysitter features a pair of Texas Instruments LiPo-management ICs: a BQ24075 battery charger and a BQ27441-G1A fuel gauge. The charger supports adjustable charge rates of up to 1.5A, as well as USB-compliant 100mA and 500mA options. It also features power-path management, guaranteeing power to your project even if the battery has died. The self-calibrating, I2C-based BQ27441-G1A measures your battery’s voltage to estimate its charge percentage and remaining capacity. It’s also hooked up to a current-sensing resistor, which allows it to measure current and power! It’s a handy IC to have, if you ever need to keep an extra eye on your project’s power draw.

SparkFun Battery Babysitter – [Link]

Full featured Arduino DSLR Intervalometer


by aniansh @

Have you ever felt like creating one of those city street time lapses that you see on the internet or recording the blooming of a flower through a time lapse or maybe create a night sky panorama of the milky way drifting in the background? Well, now you can do so with your own custom made and designed intervalometer.

Full featured Arduino DSLR Intervalometer – [Link]

Conventional Flow vs Electron Flow Explained

“baldengineer” explains which way the current flows.

A couple of weeks ago I wrote about four current flow direction myths. As a follow up to that popular post, I decided to dedicate this month’s AddOhms electronics tutorial video to Current Flow. In episode #19, I tackle the question of which way does current flow.

You might have heard about “conventional flow” and “electron flow.” In conventional flow, we assume that current flows from the positive voltage towards the negative voltage. In digital, the “negative voltage” is usually called ground. However, that’s not how the electrons move nor is it how they carry the charge around a circuit path.

Conventional Flow vs Electron Flow Explained – [Link]

Inside the SDS7012 Oscilloscope: Mainboard Analysis


Christer Weinigel has been tinkering with an OWON SDS7012 o’scope, including deciphering the device’s OS and even disassembling the bootloader. Now it’s time to dive in and examine the mainboard, physically, with many of the board’s sub-circuits explained. via

Except for soldering some wires to the JTAG and serial port on the scope, most of the things I have discoveries about the SDS7102 I have made so far has been done with just software and a bit of thinking.

Inside the SDS7012 Oscilloscope: Mainboard Analysis – [Link]

Wireless Weather Station using Arduino Due, DHT22 sensor and NRF24L01+ uploaded a new project on youtube.

In this video we build a Wireless Weather Station using the fast and powerful 32bit Arduino Due board. We measure the temperature and the humidity with a couple of DHT22 sensors and we communicate with the remote sensor using the 2.4GHz NRF24L01+ module. Let’s see how to build this project!

Today’s project is this. A Wireless Weather Station with a big 3.2” Color TFT display. As you can see, the project is up and running, and it displays the current date and time, the indoor temperature and humidity, and the outdoor temperature and humidity. The readings of the outdoor sensor are updated every second in order to demonstrate that we have a reliable communication link established with the transmitter which is outside at a distance of 5m. The readings of the indoor sensor are updated once every minute. The heart of the project is the fast Arduino Due, and as you can see there is no flickering of the screen when the values are updated. Let’s now see the transmitter.

The transmitter is much simpler. It consists of an Arduino Nano, a DHT22 sensor and the NRF24L01 wireless transceiver module. The transmitter reads the temperature and the humidity every second, and sends them to the receiver via the NRF24L01 module. This is a one way communication link, we don’t know if the receiver actually receives the data, but we send new data every second, so in case we miss a package we are going to receive another one soon. Let’s now see how to build this project.

Wireless Weather Station using Arduino Due, DHT22 sensor and NRF24L01+ – [Link]

Count down timer for UV lamps using PIC16F887


Here is a countdown timer for UV exposure lamps @

Here follows a simple count down timer useful for the production of pcbs using photoresist and UV lamps. We have used a pic 16F887 Microchip microcontroller; there are no particular reasons, we have simply used the picmicros available at the moment.

Count down timer for UV lamps using PIC16F887 – [Link]


High Current Discrete Half-Bridge Based on IR2104 or IR2101


This is a discrete Half-bridge driver based on IR2104 gate driver IC and low impedance high current N channel IRFP4368 MOSFETS. The IR2104 is a high voltage, high speed power MOSFET driver with independent high and low side referenced output channels. HVIC and latch immune CMOS technologies enable ruggedized monolithic construction. The logic input is compatible with standard COMOS or LSTTL output, down to 3.3V logic. A gate IR2104 driver is a power amplifier that accepts a low-power input from a controller IC and produces a high-current drive input for the gate of a high-power transistor such as a power MOSFET. In essence, a gate driver consists of a level shifter in combination with an amplifier.

This drive has many application, ranging from DC-DC power supply for high power density and efficiency, This project simplifies the design of control systems for a wide range of motor applications such as home appliances, industrial drives, DC brushed motors , Brushless motors, fans, Tesla Coil driver, Induction coil driver, LED driver, Halogen Lamp driver.

High Current Discrete Half-Bridge Based on IR2104 or IR2101 – [Link]

Dynamic-load circuit determines a battery’s internal resistance


by @

The simplest model of a battery comprises an ideal voltage source that connects in series with a resistance whose value—often a few milliohms—depends on the battery’s electrochemical condition and construction. If you attempt to use an ordinary ac milliohmmeter containing a kilohertz-range ac excitation source to measure a battery’s internal resistance, you get erroneous results due to capacitive effects, which introduce losses. A more realistic battery model includes a resistive divider that a capacitor partially shunts (Figure 1). In addition, a battery’s no-load internal resistances may differ significantly from their values under a full load. Thus, for greatest accuracy, you must measure internal resistance under full load at or near dc.

Dynamic-load circuit determines a battery’s internal resistance – [Link]

16 Channel InfraRed remote controller


16 Channel Infra-Red remote controller is based on PIC16F73 Microcontroller from Microchip. The receiver part follows RC5 (Philips) Code Format. Tiny receiver provides 16 latch outputs or 8 Latch + 8 Momentary outputs by closing Jumper J1. All outputs are TTL and can drive Relay board or solid state relay. The circuit uses TSOP1738 Infra-Red receiver module which provides high degree of noise immunity against interfering light source.


  • Supply Remote Transmitter RC5 Philips 2XAAA Battery
  • Supply Receiver 7V to 12V DC
  • Modulation 38Khz
  • Philips RC5 Code Format
  • Operating range up to 20 feet
  • 2 Pin Screw Terminals for Supply Input
  • On Board Power LED
  • Onboard VT (Valid Transmission) LED
  • All Outputs TTL Level provided with Header Connector
  • Jumper (J1) for Mode Selection
  • J1 Open 16 Latch Outputs
  • J1 Closed 8Latch + 8 Momentary

16 Channel InfraRed remote controller – [Link]