Arduino category

Weather Station with a BME280 sensor and an LCD screen with Arduino Mega

In this Arduino Project video educ8s.tv is going to build a simple weather station using a BME280 sensor and an LCD shield.

Hello guys, I am Nick and welcome to educ8s.tv a channel that is all about DIY electronics projects with Arduino, Raspberry Pi, ESP8266 and other popular boards. Today we are going to take a first look at the new BME280 sensor, a new very interesting sensor. We are going to build a simple but very accurate weather station project. I have built a similar project 2 years ago, using different sensors. Now that we have a new sensor available which makes things easier, it’s time to update the project. As you can see, on the LCD display we can see the temperature, the humidity and the barometric pressure. The readings are updated every two seconds. This is a very easy project to build so it is ideal for beginners! Let’s build it!

Weather Station with a BME280 sensor and an LCD screen with Arduino Mega [Link]

How to Set Up and Program an LCD Display on an Arduino

circuitbasics.com has a tutorial on how to setup an LCD with Arduino.

In this tutorial, I’ll explain how to set up an LCD display on an Arduino, and show you all the functions available to program it (with examples). The display I’m using here is a 16×2 LCD display that I bought for under $10 on Amazon. LCDs are really useful in projects that output data, and they can make your project a lot more interesting and interactive.

How to Set Up and Program an LCD Display on an Arduino – [Link]

DIY Arduino-Based Desktop CNC Router

Inspired by machines like the Nomad 883 from Carbide3D, Carvey from Inventables and more, Thimo Voorwinden had come up with a new tutorial for building a desktop CNC router powered by Arduino.

This CNC budget is around €200 and you don’t need a workshop to build it up, basic tools will do. It is designed to be modular, Arduino powered, and with a tolerance of (±0,1 mm). It has Ø8 mm linear rods, M8 thread lead screw and uses NEMA 17 stepper motors and drv8825 drivers. Plus, 250 watt flexible shaft is needed to drive the spindle and it has a work area of 200 x 250 x 100 mm (x,y,z).

Here you are the Bill of Materials that Thimo made based on his research in German and Chinese web-shops:

The tools Thimo used to build this CNC are listed here:

  • Homemade router table
  • Old ‘cordless’ drill
  • Ø22 mm wood spade drill
  • A rusty collection of old metal drill bits
  • Hammer
  • Metal saw
  • File
  • Screw drivers
  • Clamps
  • Try square
  • A soldering iron

Thimo shared this experience as a 5 HD video tutorials on Youtube to explain all the steps he went through: setting X and Y axis, the frame, Z axis and spindle, electronics and a video where the CNC is in action while milling a jigsaw piece. He added two extra videos for foam milling and testing the plotting function. Check them out here:

“For about €200 I’m now capable to CNC machine wooden parts. Not at a high speed, or without any bumps along the way, but having this option is still great. I will definitely try to machine some gears, specific parts for projects and engrave signs with this in the future.”

For more information, a detailed guide, and some notes check the project’s page at Thimo website.

Make Your Own Laser Scanning Microscope

A laser scanning microscope (LSM) is an optical imaging technique for increasing optical resolution and contrast of micrographs. It permits a wide range of qualitative and quantitative measurements on difficult samples, including topography mapping, extended depth of focus, and 3D visualization.

A laser microscope works by shining a beam of light on a subject in an X-Y plane. The intensity of the reflected light is then detected by a photoresistor (LDR) and recorded. When the various points of light are combined, you get an image.

Venkes had built his own DIY laser scanning microscope with a DVD pick-up, an Arduino Uno, a laser, and a LDR. He had also published an A-Z tutorial about making a similar device.

The result image consists of 256×256 pixels with resolution of 200 nm, about 1300 time enlargement, and it will not cost you a lot because you may have most of the parts. However, the scanning process is a bit slow, it may need half an hour for one image, and it is not crispy sharp.

The parts needed for this DIT LSM are:

  • 2 lens/coil parts of a laser pick-up (DVD and/or CD)
  • a bit of PCB
  • a piece if UTP cable (approx 15cm)
  • An Arduino UNO
  • An LDR
  • 2 x 10uF capacitors
  • 1 x 220 Ohm resistor
  • 1 x 10k resistor
  • 1 x 10k pot
  • 1 x 200 Ohm trim potentiometer
  • 1 breadboard
  • 1 switch
  • 1 3,5 mm jack plug
  • 1 audio amplifier
  • 1 laser with a good collimating lens
  • 1 piece of glass, a quarter of a microscope object glass or so to act as a semipermeable mirror
  • The under part of a ballpoint casing to put the LDR in

For the software side, an Arduino sketch is used to steer the lens, to read the LDR values, and to send information to a Processing sketch which will receive the data and translate it into an image.

You can find more details of this project with the source files at the project’s Instructables page. This video shows the device in action:

4Duino – An Introduction and a Weather API Demo


We covered 4Duino in one of our previous blog posts. 4Duino is a 2.4” Arduino based programmable display module. In our article today, we are presenting a hands-on experience with this product by building a simple project. Many thanks to 4D Systems for sending us a sample and giving us a chance to try this new product.

4Duino – An Introduction and a Weather API Demo – [Link]

Tic Tac Toe Game with a touch screen and an Arduino Uno

In this Arduino project video educ8s.tv is going to build an Arduino Game, a Tic Tac Toe game with a touchscreen.

In this video we are going to build an Arduino Tic Tac Toe game. As you can see, we are using a touch screen and we are playing against the computer. A simple game like Tic Tac Toe is is a great introduction to game programming and Artificial Intelligence. Even though we won’t be using any Artificial Intelligence Algorithms in this game, we will understand why Artificial Intelligence Algorithms are required in more complex games.

Tic Tac Toe Game with a touch screen and an Arduino Uno [Link]

Introduction to Digispark

runtimeprojects.com has a quick review of the Digispark board. It’s a really interesting mini board that can be used in small projects using Arduino IDE.

In today’s blog post we’ll analyze one of the smallest and most practical boards out there. The Digispark board. It’s size, including the USB port, is 25mm x 18mm (so tiny)!! This little board is powered by an ATTINY85 chip and clocked to 16.5Mhz. For conveniece, it has a built in USB port and can be plugged into a your computer without cables or adapters. Now that’s pretty awesome! It is powered by either the USB port, from the +5v pin with regulated 5v or from VIN pin if unregulated. The VIN pin supports from 7v to 35v although less than 12v is recommended by the manufecturer.

Introduction to Digispark – [Link]

WeMOS D1 ESP8266 vs Arduino Uno, Arduino Due and Teensy 3.2. Which one is the fastest board?

In this video educ8s.tv is going to compare the computational speed of the WeMOS D1 ESP8266 based Arduino compatible board with the computational speed of the most popular Arduino boards and the Teensy 3.2.

A few weeks ago, in a similar video we compared the performance of the Teensy with the most popular Arduino boards. Today, we are going to add another board to the comparison, the WeMOS D1 ESP8266 Arduino compatible board. I have prepared a detailed tutorial on that board so you can check it out before we start.

WeMOS D1 ESP8266 vs Arduino Uno, Arduino Due and Teensy 3.2. Which one is the fastest board? – [Link]

CTC By Arduino, Creative Technologies in the Classroom

Arduino and Genuino Education is a worldwide-leading school initiative bringing technology into the hands of teachers and students to create a more inventive learning experience. It offers multiple platforms, including research-based projects and in-class programs such as Creative Technologies in the Classroom(CTC) and other initiatives like: Mastering Arduino: Foundations, Arduino Education on YouTube, #EduMondays on Arduino Blog, and other on-ground events. These initiatives are not launched yet and are coming soon, and one event, BETT 2017, was held in London earlier on January. CTC is the running initiative right now.

CTC is Arduino’s one-of-a-kind STEAM (Science, Technology, Engineering, Arts, and Mathematics) program for upper secondary education. Students are introduced to the foundations of programming, electronics, and mechanics through a series of playful, well-documented projects and easy-to-assemble experiments.

Arduino’s one-of-a-kind STEM program has been implemented in nearly 500 schools throughout the globe, resulting in an overwhelming satisfaction rate among both students and teachers alike. 95% of instructors continue to use the curriculum in their classrooms year after year, while more than 13,000 students have already participated.

Source: Intel IQ

CTC 101 — running on Arduino 101 — is divided into 4 modules or blocks covering various topics. The CTC program is a toolbox comprised of more than 20 hands-on and easily assembled electronic projects, an online source for course materials, documentation tools, content specific reference sections, and professional support services.These four distinct stages are:

  1. Teacher training (one week)
  2. Themed modules (five modules, 10 weeks)
  3. Student projects (nine weeks)
  4. Technology fair (one day)

Each program comes with a CTC 101 Toolbox consisting of:

  • Sets of electronics components and pre-cut mechanical parts
  • 25+ hands-on projects
  • Live training for teachers
  • Free online documentation and course materials
  • Support forums for teachers and students

“CTC is one of our best educational activities and makes us especially proud on account of its potential for teacher training, student motivation, and transformation of the society in which we live.” – Javier Hidalgo, Head of Exhibitions and Programmes, la Caixa Foundation

Participating schools should have student access to computers and the ability to access the internet – A dedicated room that can function as a workshop, or at least a room with tables to work on – Different exercises may involve common school appliances such as pens, scissors, sticky tape, etc. In order to register your school in the CTC program just apply here.

Arduino Education is committed to empowering educators with the necessary hardware and software tools to create a more hands-on, innovative learning experience. More details about these initiatives are available at Arduino Education and this blog.