Robots category

AMY Robotics, Multifunctional Autonomous Mobile Robots

Earlier this month, the multifunctional autonomous mobile robots “AMY A1” and “AMY M1” had been launched as the first batch of products of AMY Robotics. Amy Robotics is an innovative technology company focusing on research and development of service robots that enhance quality of life with robotic technologies, products and services.

Both AMY Robots are intelligent mobile-service robots characterized with speech interaction, autonomous navigation, home automation, SDK and Cloud platform service that is powered by sophisticated AI technology and cloud computing. They can understand speech and make conversation with people in noisy environment, recognize specific people, follow a person in front of them and move to a place autonomously.

Features of AMY Robots:

  • Cloud Platform Service
    AMY Robots capabilities are empowered by cloud platform and can be upgraded and extended continuously.
  • SDK, Open platform for developers
    Android development environment access to robot hardware and capabilities. Amy can provide remote healthcare consultation service via telepresence, daily health tips, health data management, medicine reminder and more.
  • Home Automation
    Amy robots provide environment perception, security patrol and monitoring, and smart home management enabling you controlling home appliance with voice commands.
  • Autonomous Navigation
    Amy knows well at indoor positioning. She can move from a location to another autonomously and safely with obstacle avoidance.
  • Telepresence
    You can control the robot with video communication through Amy’s client application. It provides you boundless connection with your family, colleagues and friends through virtual presence at any time anywhere.
  • Speech Interaction
    Amy is powered by intelligent language processing engine which support multi-lingual speech interaction, far distance (5m range) recognition in noisy environment. Amy can help you access massive on-line knowledge base with speech. You can have hand-free robot operation (play music/video, take picture, set volume, robot movement control, intelligent reminder etc).

AMY A1 and AMY M1 are 1.1 meter robots weighted 15 kg with 10.1″ screen head and up-to 0.5 m/s moving speed. They are running based on 8-core ARM CPU+4 core Intel CPU using 20Ah 14.8V battery, which can last for 8 hours. With its 5 meters pick-up range microphone, AMY can be controlled using voice commands like “Hello Amy, follow me” and “Hello Amy, go to the kitchen with me”. However, The M1 has an additional laser sensor, wider detection range, higher localization accuracy, and supports function customization.

Amy A1 robot was presented at the Innorobo 2017 trade show in Paris. For more information and details visit their official website.

FPV drone teardown

Michael Dunn @ edn.com did a quick tear-down of his drone.

The main processor is an ST STM32F031K6, an ARM Cortex-M0 with the usual cadre of peripherals, as well as a motor-control block (the leftmost large chip in Figure 2). Although at the lower end of the ARM continuum, it’s doubtless more than powerful enough for this application. Amazing what $1 will buy you in a microcontroller these days.

FPV drone teardown – [Link]

4 Wheel Robot Motor Driver ( 4X 3Amps LMD18201 H-Bridge)

This compact board will help you to drive 4 Wheel Drive Robots, each axis can handle a load current up to 3 Amps and supply 12V – 48 V DC. Board requires two PWM and Dir. signals for full 4WD operations, mainly differential steering for taking turns left or right or complete 360 degree rotation. The module has been designed around LMD18201 from Texas Instruments. The LMD18201 is a 3A H-Bridge designed for motion control applications. The device is built using a multi-technology process which combines bipolar and CMOS control circuitry with DMOS power devices on the same monolithic structure. Ideal for driving DC and stepper motors; the LMD18200 accommodates peak output currents up to 6A. An innovative circuit which facilitates low-loss sensing of the output current has been implemented.

4 Wheel Robot Motor Driver ( 4X 3Amps LMD18201 H-Bridge) – [Link]

RELATED POSTS

Ther Robot Core

Robot Core – The Ultimate Raspberry Pi Robot Controller

The Robot Core, which is a robot control board for the Raspberry Pi and Arduino, brings many different elements into one awesome package. It allows you to efficiently control motors, servos, and read sensor data without needing 3-4 additional boards to hookup. Several Robot Core boards can be connected together in a linear series to add even more functionality.

The Robot Core board
The Robot Core board

Robot Core uses I²C (Inter-Integrated Circuit) to communicate with Raspberry Pi. I²C is a widely used serial computer bus invented by Philips Semiconductor. It is a very easy-to-use two-wire bus that your Pi has no difficulty talking with. A built-in level shifter ensures compatibility to both 3.3 volt and 5 volts I²C buses. The Robot Core supports all Raspberry Pi boards (the past and present versions) and some Arduino boards also.

Now, let’s talk about the technical details.

Software Support:

The board has software provided in the form of libraries and python example programs to get you started fast. Thanks to Second Robotics for making the software Open Source. All required resources will be available in July 2017. Currently, available links are – Drivers and LibrariesSupport Documents.

Software for The Robot Core
Software for The Robot Core
The Robot Core Python Script
The Robot Core Python Script

Motor Drive:

This board provides up to two 5 Amp continuous load DC motor outputs that can be used as a pair to drive a single stepper motor. The Robot Core’s built in safety protection prevents overheating and detects the motor failure.

Servo Control:

The Robot Core can set servos to exact position with the help of 16 bit PWM signal. It has eight ports for both analog and digital conventional servos. You can tune each servo using software-based GUI tuning method and also set their start-up positions individually.

Two ports are provided for connecting Dynamixel servos. Connecting multiple Dynamixel servos at the same time is supported. All functionalities are accessible by simple low-level commands. Many example python codes are available there to get started with Dynamixel servos.

Ultrasonic Sensors:

You can connect up to 4 ultrasonic sensors (HC-SR04) with the board. Given libraries convert measured distance into millimeter. The Robot Core board can provide filtered outputs with higher accuracy or raw outputs with greater speed, the choice is yours.

Analog Input:

Up to 8 12-bit analog inputs are supported for sensors or feedback. Each input has a range of 0-5V and the board also provides protection from exceeding the input limits. The additional analog reading for main power voltage lets you monitor supply voltage in real-time. The Robot Core has configurable warnings for low power.

Power:

The range of input voltage is 6.4v to 14v. An onboard DC-DC regulator is there for generating 5 volts, capable of providing 6 Amps current to the load. Optional separate power supply inputs for servos and for Dynamixel servos are also present.

Other Technical Information:

  • Clear on-board labeling. Each port and screw terminal has its pins labeled.
  • Prototyping space for adding more functionality. This space removable to make the board smaller.
  • Easy to access voltage rails.
  • Access to the Raspberry Pi I²C at 5V logic level.
  • Status LEDs are for main power voltage, DC motor status, and script controllable status.
RobotCore board details
Robot Core board details

Application Of The Robotcore Board:

The Robot Core is an all-in-one solution for many projects. One can do pretty much any autonomous and/or robotics projects with this board. The possibilities are endless. Below are just some example projects:

  • A smart plant monitoring system that reads ambient light, temperature, plant moisture, and even uses two water pumps to water two different plants.
  • Using a single board, you can build a 2 wheeled robot with a ring of 8 analog ultrasonic sensors and a strong Dynamixel smart servo arm.
  • With an IMU (Inertial Measurement Unit) tied into the I²C bus, you can create a two-wheeled self-balancing robot.
  • Build a biped walker robot with sensors to navigate based around the board and a Pi using powerful servos or Dynamixel smart servos.
  • Make an automated greenhouse. Have analog sensors for light, temperature, carbon dioxide, moisture, water leaks, and also control two water pumps.
The Robot Core plant watering system
The Robot Core plant watering system

Niryo One, Your Next Affordable 6-Axis Robotic Arm

Two French engineers who are passionate about innovative use cases made out of new technologies and building accessible and collaborative robot, are now mixing last technology progresses in mechanics, electronics and computer science to deliver a new product: Niryo One!

Niryo One is an accessible 6 axis robotic arm, made for makers, education, and small companies, and powered by Arduino, Raspberry Pi and ROS. The 3D printed robot will be customizable since you can print out your pieces and customize them the way you like. STL files will be open source soon.

In a mission to democratize robotics, Niryo One team is working on making it affordable and user friendly. Endless number of applications are possible by using Niryo One, like drilling, pick and place operations, and many other options thanks to the 6-axis available.

Niryo One can be controlled in many ways, whether using a web and mobile application, a joystick, or just your hands in its learning mode. Also you can control it using G-code if you want to use Niryo as a CNC.

Connected with the cloud, each update and project you do with Niryo will be synced there, with the ability to share it with the online community. More gadgets and tools will be added to the cloud and you will also get free app updates.

Technical Specifications

As makers ourself, we love 3D printing, Arduino and Raspberry Pi. Those are great to learn robotics, with the help of the online community. We want to go a step further, by embed those technologies and electronics platforms in Niryo One, to show to the world that, yes,  we can make a real useful product with 3D printing, Arduino and Raspberry Pi. We hope that more people will be interested in learning these technologies when seeing what our robot can do, so it will reinforce the community around robotics projects.

Niryo One is now live on Kickstarter and still has 35 days to go. You can pre-order a mini Niryo One kit for $119 and the early bird Niryo One maker kit for $549. More details can be found at the official website.

Anyone Can Build A Robot Arm With MeArm Pi

Mime Industries launches Kickstarter campaign to fund their Raspberry Pi powered robot arm kit that’s simple enough for kids to build.

Mime Industries launched a crowdfunding campaign to fund the production of the world’s first robot arm kit for the Raspberry Pi. Designed to be easy to assemble and not requiring extensive knowledge of electronics, the MeArm Pi STEM kit helps kids and adults learn robotics and teaches them how to code.

Created by Ben Pirt of Mirobot and Ben Gray of MeArm, this is their fourth overfunded technology campaign and is based on the original MeArm, launched back in 2014. “We believe in helping children to have fun whilst learning about technology and the MeArm Pi is completely designed around that goal” said Ben Pirt. “Our products are simple to build and can be easily understood. Meaning you can use them to learn whilst playing, adding your own imagination to make something great”.

The MeArm Pi integrates smoothly with the Raspberry Pi, the ubiquitous educational computing platform. The kit uses a Pi HAT (a plug-on board that fits on the computer) with on-board joysticks for control. MeArm Pi is made from plastic parts for the structure, screws and 4 metal gear servos in addition to the Pi HAT. It can be programmed in Python, Scratch, Java and many other programming languages.

The MeArm Pi campaign launched on the popular crowdfunding site Kickstarter on February 7 2017 and runs until March 9 2017 with a goal of £10,000 (Approx $12,400 USD). All early birds are sold out, rewards include the standard MeArm Pi Kit of £60 (Approx $75 USD) which includes a robotic arm. All kits deliver free worldwide.

Check out the campaign video:

 

CTRL, The Industrial Robot On Your Desktop

CTRL the robot is a desktop-sized robot arm that can do a lot! It enables your computer to perform manipulation of real objects via software and gives you access to technology that has been locked away in large corporations factories.

Check this video to see the amazing features of CTRL.

CTRL was launched on a Kickstarter campaign that unfortunately didn’t reach its goal of AU$ 215,000. The early bird product was sold for AU$ 699 (~ $540) and you were able to get two robots for AU$ 1598 (~ $1230).This robot arm is a fraction of the price of similar robots you might see in factories. It was developed by Robotics Evolved to be an affordable robot arm.

Unveiled at CES 2017, this desktop-sized robot arm aims to make robotics more accessible to the masses. The device is open-source and can be run on the programming language of the user’s choosing.  For those unfamiliar with code, CTRL can also learn to replicate movements when manipulated by hand.It ships with example applications with source code and ‘Motion CTRL Studio’ software to easily run diagnostics, visualise movements and script interactively.

CTRL is equipped with a gripping tool but the company plans to expand attachment offerings to include options like spray nozzles and engraving tools. Also in the box is a gripping tool, with a range of interchangeable arm tools to follow including suction pads, spray nozzles, laser engraving tools and more. The team has also made this technology open-source, themechanical, electronic and firmware source, so users can invent their own tools and 3D print them.

With a full range of movement through 6 axis articulation, CTRL the Robot can lift and carry with incredible precision. It uses specially designed brushless servo motors for smooth motion. Even though it roughly stands at the height of a piece of A4 paper, it can reach as far as a human arm and carry up to 1.7 pounds (750 grams). The team used a custom cycloid gearbox design with a pass-through encoder that was conceived, designed and prototyped. The gearbox is highly efficient and can be back driven. It has multiple contact points and offers zero backlash.

Robotics Evolved was seeking funding through a Kickstarter campaign and maybe they should now find another way to bring this product to life again. You can sign up on their newsletter to keep updated with the next steps for CTRL!

Sources: Yahoo Finance, Kickstarter Campaign

XPlotter, The All-In-One Plotter, Engraver and Laser Cutter

XPlotter is an affordable and easy to use desktop plotter, Laser cutter and engraver. It is designed to create a new definition of plotter. By integrating the laser engraver and cutter into the mechanism, it becomes a versatile desktop tool for artists, craftsmen and makers to set their imagination free.

The all-in-one machine can simulate real effects of handmade drawing and writing, can cut out and laser engrave on different materials. In addition, it has the capability to pick and place objects perfectly!

This machine is now live on Kickstarter, check out the video campaign to see XPlotter in action:

 

The writing of XPlotter is outstandingly similar to the real hand writing thanks to the angle of writing and the programmed process. Now you can do your paperwork or write your homework as neat as possible. Also you have the option to choose from a variety of fonts and pens! Drawing outputs also look so real because of demonstrating shadows and tiny tiny details.

A wide range of materials like paper, leather, fabric, cloth, and cardboard are able to be engraved by the laser engraver feature of XPlotter. Short time is needed to engrave your artworks due to the powerful laser equipped with the machine. Safety goggles are included too for making sure that users cope with laser safely.

This personal robot that is dedicated to write, draw and engrave for you has no limits. XPlotter team made a built-in vacuum pump system to enable XPlotter to pick and place at a high speed and features a precision within 0.012mm. It only takes you a few minutes to change the end effector into a vacuum suction cup, which is powerful enough to grab spherical items.

Amazingly, the team behind XPlotter has open-sourced the operation interface to welcome more applications made by users through the secondary development.

In short, these are the specifications of this amazing tool!

Check out this comparison between XPlotter and its alternatives.

The retail price will be around $500 but now you have the chance to get the basic XPlotter via the crowdfunding campaign for only $349. The full kit including engraving and pick and place is priced $529, where the final retail after Kickstarter will be $629. This campaign still has 52 days to go, you can check the campaign page now and choose your reward.

More videos of XPlotter in action can be found at this Youtube profile and the official website.

Dobot M1, All-in-One Multifunctional Robotic Arm

Shenzhen Yuejiang Technology Co. Ltd (“Yuejiang”) is a leading robot arm solution provider in China. Yuejiang is established in July 2015 in Shenzhen, China by 5 dedicated robotics engineers with the mission of facilitating the development and upgrading of the industrial robotic arms solutions in China and continuously developing the extensive applications in this arena. Yuejiang’s newest product is Dobot M1!

Dobot M1 is an all-in-one industrial robotic arm based on SCARA, with many interchangeable heads to 3D print, laser engrave, solder and pick & place unlimited applications. It also has computer vision ability.

Check this video featuring the amazing capabilities of Dobot M1:

Dobot M1 is the second edition of Dobot 1.0. Dobot 1.0 featured 7 different ways of controlling a robotic arm, including mouse control, vision control, EEG control, mobile APP, Leap motion control and gesture control, that was targeting makers as a new way of personal fabrication. Dobot 1.0 Kickstarter campaign raised an incredible $615,000, shattering a goal of only $36,000, Now Dobot M1 is extending its audience to the education, self-employers and factories sectors providing them an enhanced edition of the multifunctional arm.

Dobot M1 comes to solve the problem that industrial robot arms with such specifications are usually very expensive. Providing Dobot M1 with a price around $2000 will change the manufacturing equation forever. Dobot M1 will be the greatest tool to be added to your working space to try some light manufacturing professionally.

The toolheads included with the arm give multiple choices of operation, whether a 3D printer, gripper hand, laser engraver and 4th axis attachment. Once, it is a 3D printer with 400mm radius and 200mm height printing area itself, and you can extend this printing area with a 1m long trail. Then it is a laser engraver that line engrave and shade engrave your favorite symbols and pictures precisely thanks to the PWM laser it uses.

Attaching it with a camera, you are giving Dobot M1 eyes to process the mission given. It has integrated visual API that can be simply work with OpenCV or your own visual system. It also can be a precise pick and place machine, can do two things at the same time with the dual arm operation feature and can move around!

Dobot M1 support Bluetooth and WiFi, you can connect more than one Dobot together to function simultaneously with the same of multi functions. You can also control them using a mobile app. No need to worry about bein an expert to cope with Dobot M1, you can program it with a visual and easy programming language, and furthermore you can teach it the moves you want it to do with handhold teaching and then it will mimic them. These are the full specification of Dobot M1.

What makes Dobot M1 special is its expandability, it has a standardized head tool port, protocol, API, SDK, and extension ports. It is also considered affordable in comparison with its competitors.

“One simple fact: an industrial SCARA type robotic arm prices between $10,000 and $20,000, two-year payback period. For many small businesses constantly adjusting their production technique, this is too much to afford, not to mention those creative individuals who want a professional making machine. With less than $2,000, and 3 months of payback period, Dobot M1 is here to fill the missing puzzle. With more functions and features, Dobot M1 is able to integrate in more steps of production, helping you save more budget.”

Dobot M1 is now live on a Kickstarter campaign and it only has 3 days to go! Hurry up and pre-order an amazing addition to your fablab or co-working space. You can get the standard kit with two toolheads of your choice with around $1600. It will be a nice automated all-in-one tool for hardware startups that are wasting time and money on different tools and materials doing most of the work by themselves.

For more details about Dobot M1 check the official website and the crowdfunding campaign page.

Program a mBot With Scratch And Arduino

Makeblock was founded in 2012 in Shenzhen as the world’s first open-source robot and programing platform. With more than 400 mechanical components, electronic modules, and software tools, the company is determined to bring meaningful STEM education opportunities and the maker mindset to the mass consumer market to make a real difference in society’s future with robotics.

pic_1

Makerblock has a variety of products and one great product is mBot, a robot better fit education and home use. It is simple to use and affordable, you can get mBot for $24 or with bluetooth for $99.

The mBot is designed especially for mBlock Scratch-based language to help teachers and kids to have hands-on experience about robots and explore STEM education.

 

World’s very first Scratch 2.0 branch that can upload a program into Arduino based boards
World’s very first Scratch 2.0 branch that can upload a program into Arduino based boards
mBot overview

Makeblock keeps delivering tutorials about its products and the recent one was a line follower mBot on Insructables.

To do this project you need the following tools

fpk3ufsiva4gsly-medium

Mechanical part list
  • 1*Metal Base Plate
  • 2*TT Gear Motor
  • 2*Wheel
  • 2*Tyre
  • 1*Plastic Universal Wheel
  • 1*Magic Tape 20*30mm
  • 6*Brass Stud M4*25
  • 14*Socket Cap Screw M4*8
  • 6*Nut M4
  • 4*Nut M3
  • 4*Philip’s Head Screw M3*25
  • 2*Tapping Screw M2.2*9.5

90053-500x500

Electronic Modules List

You only have to put each element in the right place and to tighten some screws. The image below shows how to assemble the pieces together.

mbot

The mBlock is a customized version of scratch. It is easy to use mBlock to interact with electronic modules. To make the project works, you should first program the Control Board (Compatible with Arduino) using this code of mBlock.

f37tvruiva4gsx1-medium

You can also program it using Arduino IDE since it makes it easy to write code, upload it to the I/O board, and interact with mBot. Line following is one simple code for controlling the mBot by Infrared Controller.

#include "mBot.h"
#include "MePort.h"
#include "MeIR.h"
#include "MeDCMotor.h"

MeBoard myBoard(mBot);
double angle_rad = PI/180.0;
double angle_deg = 180.0/PI;
MeIR ir;
MeDCMotor motor_9((MEPORT)9);
MeDCMotor motor_10((MEPORT)10);

void setup() {
 ir.begin();
}

void loop() {
 if(ir.keyPressed(64)){
  motor_9.run(255);
  motor_10.run(255);
 } else {
  if(ir.keyPressed(25)){
   motor_9.run(-255);
   motor_10.run(-255);
  } else {
   if(ir.keyPressed(7)){
    motor_9.run(255);
    motor_10.run(-255);
   } else {
    if(ir.keyPressed(25)){
     motor_9.run(-255);
     motor_10.run(255);
    } else {
     motor_9.run(0);
     motor_10.run(0);
    }
   }
  }
 }
 ir.loop();
}

You can learn more about using Arduino for mBot here.

This is what should mBot do!

You can build your own adventure, play some games or make some functions completed autonomously using mBot, such as playing football, ultrasonic obstacle-avoiding and following line. Makeblock is opening wide doors for innovation by making STEM and hands-on experience available for kids.

A new product from MakerBlock is now live on Kickstarter. AirBlock, the first modular drone that can be turned into a hovercraft, car, and more. You can order this drone from the project’s page for $99.

More details and updates can be reached at the official website. Also you can access codes and source files at Github.