Tag Archives: Arduino

Maker Uno – The $6 Arduino Uno Clone Board for Students and Learners

Unless you are completely new to electronics, you probably must have heard of the household name called “Arduino”. Arduino is an open-source platform used for building electronics projects and one that pioneered the open-source hardware and the DIY maker’s movement. Arduino can sense the environment by receiving input from a variety of sensors and can affect its surrounding by controlling lights, motors, and other actuators. The microcontroller on the Arduino is programmed using the Arduino programming language which you can program to do so many things like switch on your lights when you walk in or send an alert when there is an intruder in your house.

The Arduino Uno is one of the first boards of the Arduino Family and that which fully sparked the Arduino Revolution. The success of this boards in teaching kids, students, enthusiast and even engineers has led to drastic replication of it, often called Arduino Clones or Arduino Compatible board. Arduino Clones are basically Arduino lookalike boards that perform almost the same functionality with the real Arduino but not made by the Arduino team. Some of these Arduino clones comes at a very lesser cost as compared to the $25 of the official Arduino Uno, some even as low as $3.

Maker Uno is another Arduino Compatible board released by Malaysia based Cytron Technologies, having launched their first Arduino Uno clone board “Ct Uno” about three years ago. The Maker Uno is purple in color and retails for just $6. It shares close similarities with the standard Arduino Uno with just some few differences. Its termed to be a board designed for students learning coding and microcontroller for the first time. The name Maker is to encourage everyone to be a maker and start building things.

As the Arduino Uno, the Maker Uno is based on the popular Atmega 328P microcontroller can be programmed via it’s USB port. It is also based on the includes standard female headers – means it will easily support most Arduino based Shields.

The traditional DC Jack on the Arduino Uno has been removed from the Maker Uno board and the obviously 5V linear regulator, so the Maker Uno board can only be powered by 5V from the micro USB port or the 5V header pin. It includes a piezo buzzer connected to pin 8 for audio outputs with a selectable switch to disable the buzzer, a micro USB port as compared to the Arduino Uno USB B connector, and a programmable push button. Aside from the standard LED on pin 13, Maker-UNO comes with a programmable LED on every digital pin, from pin D0 to D13.

Maker-UNO combines the simplicity of the UNO Optiboot bootloader the stability of the low-cost FTDI CH340 chip and the R3 shield compatibility of the latest Arduino UNO R3.

The following are some of the Maker Uno Features:

  • SMD ATmega328P microcontroller(the same microcontroller on Arduino UNO) with Optiboot (UNO) Bootloader
  • USB Programming facilitated by the CH340
  • Input voltage: USB 5V, from computer, power bank or standard USB adapter
  • 500mA (maximum) 3.3V voltage regulator
  • 0-5V outputs with 3.3V compatible inputs
  • 14 Digital I/O Pins (6 PWM outputs)
  • 6 Analog Inputs
  • ISP 6-pin Header
  • 32k Flash Memory
  • 16MHz Clock Speed
  • R3 Shield Compatible
  • LED array for 5V, 3.3V, TX, RX and all digital pins
  • Utilize USB Micro-B socket
  • Purple PCB!

The Maker Uno is a great board for getting started with coding and electronics. Unlike the Arduino Uno, to start development with the Maker Uno, you will first need to install the CH340 driver first. The Maker Uno is available for purchase at Tindie and Cytron. You can kickstart your Maker Uno board adventure from here.

Arduino E-Paper Display Review ( Waveshare 1.54″)

Our friends at educ8s.tv uploaded a new video. It’s about Waveshare 1.54″ e-paper display:

Dear friends welcome to this Arduino E-Paper display tutorial. In this video, we are going use this small e-paper display with Arduino for the first time and talk about its advantages and disadvantages.

Arduino E-Paper Display Review ( Waveshare 1.54″) – [Link]

DIY Light (Lux) Meter using BH1750 sensor, Arduino and Nokia 5110

Hi guys, continuing on our recent path of building really cool stuffs based on the Nokia 5110 LCD display, today we will be building a DIY Lux (or light) meter using the highly sensitive BH1750 light sensor.

In photometry, illuminance is the total luminous flux incident on a surface, per unit area. It is a measure of how much the incident light illuminates the surface, wavelength-weighted by the luminosity function to correlate with human brightness perception. Similarly, luminous emittance is the luminous flux per unit area emitted from a surface. Luminous emittance is also known as luminous exitance.

Lux is a measurement of the overall intensity of light within an environment for any given area or distance from the source or lux is the amount of light in an environment perceived by the human eye. The Lux meter is thus, a device used to measure the light intensity within an environment and its exactly what we will be building during this tutorial.

DIY Light (Lux) Meter using BH1750 sensor, Arduino and Nokia 5110 – [Link]

Arduino Mega Chess on TFT display

Chess processor with GUI dedicated for Arduino Mega. by Sergey Urusov

After some my Arduino project remains unclaimed touchscreen, so I decided to realize my chidhood dream to create a chess program. After a couple of months it wins me, but it is not big deal because i do not have any chess rating, just amateur.

This project uses Arduino Mega 2560 because of lack of operative memory on Uno, 2.8 inch touchscreen, passive buzzer, and about 2000 lines of code.

Arduino Mega Chess on TFT diplay – [Link]

DAC Shield For Arduino Nano using MCP4725

This project features an easy to use Digital to Analog converter (DAC) shield for Arduino Nano. The project is built using MC4725 12Bit DAC IC over I2C communication. The shield directly seats on Arduino Nano and also can be used as stand-alone DAC converter that can be connected to other micro-controller board with help of 5 pin header connector. Output is 0-5V. PCB jumper J1 provided to select the address in case of using multiple modules on the same I2C .

Shield also provided with high current driver circuit, which converters voltage to current and can be used to drive Laser diode or LED. Maximum possible load 500mA.

DAC Shield For Arduino Nano using MCP4725 – [Link]

Arduino Milliohm Meter

danielrp @ instructables.com writes:

This is an accurate milliohm meter with a maximum resolution of 0.1mOhm. The design is very simple, the whole assembly can be built in a couple of hours once all the parts are gathered. It is based on a precision current sink and a high-resolution ADC controlled by an Arduino Nano V3. It uses a Kelvin connection with the resistor under test to exclude the resistance of test leads from the measurements. It can be very useful for measuring small resistors and the resistance of PCB traces, motor coils, inductance coils, transformer coils, or calculate the length of wires.

Arduino Milliohm Meter – [Link]

The Little Buddy Talker – Arduino Compatible Speech Chip Set

Small, versatile, fun, and inexpensive! Use the 254 word library to bring speech to your Arduino projects! Speak, Arduino, Speak!

About a year ago, I designed an Arduino shield that allowed for you to add voice to your electronic designs.  I’ve since been able to minimise that design into a much less inexpensive, and smaller unit.  This unit has a 254 word library that consists of colours, commands, months/days/time, numbers, directions, feelings, units of measurement, security words, math lingo, and general words; all of which are spoken by “Lucy” – A lovely female voice with an English accent! Meet “The Little Buddy Talker” Arduino compatible speech kit set!  It is Production Ready, and eager to land in your hands!

The project is live on kickstarter and has 29 days to go.

The ezPixel is an Upcoming FPGA based WS2812B Controller Board

FPGAs are field programmable gate arrays which basically means they are reconfigurable hardware chips. FPGAs have found applications in different industries and engineering fields from the defence, telecommunications to automotive and several others but little application in the maker’s world. Mostly, as a result of being largely difficult and high cost as compared to the likes of Arduino, but the introduction of the ezPixel and other similar FPGA boards is making this a possibility.

Prototype modules.

The ezPixel board, by Thomas Burke of MakerLogic, is a small size FPGA based circuit board that can be used to drive up to 32 strings of WS2812Bs, for up to 9,216 LEDs in total, a very first of its kind. These WS2812B programmable color LEDs have been a phenomenon in the maker’s world, being used in various Led Lights and creating of various Light Artworks. These popular LEDs comes in strings that can be cut to any length, and only require a single wire serial data connection to control all the lights in the string individually, and multiple strings can be stacked together to create large two-dimensional displays.

ezPixel description.

Most WS2812B controller boards can be used to control up to hundreds of these LEDs, but not thousands of them. The ezPixel board is a perfect fit for applications that use thousands of these LEDs. The ezPixel board is powered by the Intel MAX FPGA, a single chip small form factor programmable logic device with full-featured FPGA capabilities, and it’s designed to interface with other Micro-controllers or any SPI/UART host device. The ezPixel board serves as bridge between microcontrollers and long WS2812B strings. A user sets the length of each string using simple commands that are sent via the SPI or USB/UART communication link.

The following below are the features of the ezPixel:

  • WS2812B Smart Pixel Controller.
  • Up to 32 Strings can be controlled independently.
  • Up to 9216 LEDs can be controlled.
  • Communication:
    • USB/UART Interface.
    • SPI Interface.
  • Read/Write Pixel Memory.
  • FPGA – Intel MAX10M08 FPGA.
  • Dimension:
    • 1” x 3” (25mm x 76mm).
  • SPI Flash.

The ezPixel can run as a standalone display controller as a result of its serial flash memory chip, and this board is slated for a crowdfunding campaign in early 2018.

Easy LED Strip Lightning Made possible by ChromaTab

LED strips provide users with multi-color and flexible illumination which can be fit into tight spacing. Also, they are customizable, durable, and easy to install which is why LED strips have gained popularity in design and personal projects. However, installing them can result in a lot of wire, power transistors (to control the LEDs), a microcontroller, a voltage regulator, and a lot of soldering. When danjhamer, a user from Hackaday, faced this problem while doing a small project with his daughter he came up with ChromaTab.

ChromaTab is a small control board for WS2812B RGB LED strips that can be soldered directly into the end of the strip. The device has 14 digital pins, 6 analog pins, and Arduino compatibility which allows the users to update and upload new sketches using the Arduino IDE. The sketches are to be uploaded though a USB to serial converter and as the firmware is based on Adafruit Neopixel library, effects and animations can be easily created.

It has an input voltage of 5-7 v, a current of 90 mA, clock speed of 16 MHz, SRAM of 2 KB and flash memory of 32 KB. It’s based-on Arduino Pro mini and Atmega 328P microcontroller. It is 43 mm wide, 10 mm High and 4 mm deep this size makes it easy to fit in small places. The only soldering needed is the 3 castellated pads to solder directly into the LED strip making your project more simple, organized, and easier to program. The complete specifications can be found on its official Hackaday website.

The ChromaTab could be perfect for kids learning about electronics or designers who want to use LED strips but don´t know much about electronics. Its already on sale in this website for € 18,00. Soon there will be add-on boards on sale to provide extra functions such as USB to serial converter. The device is cheap and offers to facilitate an otherwise boring task, but some improvements could be made such as making it water resistant (for Waterproof LED strips) or making it adaptable to other LED strip references. ChromaTab opens the door to a lot of projects and possibilities which is why it needs to keep improving to adapt to user’s project needs.

Arduino Nokia 5110 Tutorial #2- Displaying Customized Graphics

In one of our previous tutorials we did an introduction on how to use the Nokia 5110 LCD  with the Arduino, the tutorial covered displaying texts with different fonts etc. For this tutorial, we are taking things a little bit further and will be working through the display of customized graphics on the Nokia 5110 LCD display. This tutorial will particularly be useful for those who want to display their brand logo or any other kind of image on the LCD asides ordinary texts.

Arduino Nokia 5110 Tutorial #2- Displaying Customized Graphics – [Link]