Tag Archives: ESP8266

Decoding and Encoding JSON with Arduino or ESP8266

In this blog post you’re going to learn how to decode (parse a JSON string) and encode (generate a JSON string) with the ArduinoJson library using the Arduino with the Ethernet shield. This guide also works with the ESP8266 and ESP32 Wi-Fi modules with small changes.

Decoding and Encoding JSON with Arduino or ESP8266 – [Link]

LoRaCatKitty: Build IoT Applications with LoRa in 3 steps!

Based on the ESP8266 module, “Andres Sabas” unite the best of WiFi and LoRa, Facilitating the development of IoT solutions.

LoRaCatKitty is designed to simplify the development of Internet of Things (IoT) applications using the fabulous (but still underutilized) LoRa Technology. We have based our development on the ESP8266 WiFi module and the LoRa RN2903 or RN2483 microchip module, and we have designed it to allow you can create IoT applications without deep knowledge of technology.

Raspberry Pi Publishing MQTT Messages to ESP8266

Rui @ randomnerdtutorials.com tipped us with his latest tutorial. He writes:

In this project you’ll create a standalone web server with a Raspberry Pi that can toggle two LEDs from an ESP8266 using MQTT protocol. You can replace those LEDs with any output (like a relay that controls a lamp).

Raspberry Pi Publishing MQTT Messages to ESP8266 – [Link]

Esp8266 WebServer farm

An Esp8266 WebServer farm project by Eldon Brown’s (a.k.a WA0UWH)

After several long months, I have reactivated my Esp8266 WebServer Farm.
Currently, one of my WebServers can be accessed as: esp.wa0uwh.com:8154

Esp8266 WebServer farm – [Link]

Tiny ESP8266 Breakout Board

Stavros made a very small ESP8266 breakout board:

A very small breakout for the ESP8266. Includes all necessary pullups/pulldowns for it to boot to your code, a LDO regulator, a 3V3 output pin and enough breadboard space for one row on each side on a standard breadboard.

Tiny ESP8266 Breakout Board – [Link]

WeMOS D1 ESP8266 vs Arduino Uno, Arduino Due and Teensy 3.2. Which one is the fastest board?

In this video educ8s.tv is going to compare the computational speed of the WeMOS D1 ESP8266 based Arduino compatible board with the computational speed of the most popular Arduino boards and the Teensy 3.2.

A few weeks ago, in a similar video we compared the performance of the Teensy with the most popular Arduino boards. Today, we are going to add another board to the comparison, the WeMOS D1 ESP8266 Arduino compatible board. I have prepared a detailed tutorial on that board so you can check it out before we start.

WeMOS D1 ESP8266 vs Arduino Uno, Arduino Due and Teensy 3.2. Which one is the fastest board? – [Link]

Expand Your ESP8266 Analog Inputs With $10

ESP8266 is a very powerful module for building an IoT or WiFi-based project. But since it has only one analog input, you may need to use another microcontroller or circuit to connect multiple sensors and data sources with your ESP8266.

Allaboutee created the second version of their analog expander board. Simply it is a board that lets you add eight analog inputs to your ESP8266 via I2C, the first version had only four inputs.

The expander is a 19x14mm board that is powered by a range of 2.7V to 3.6V, features 8 10-bit resolution analog inputs for sensors with an output voltage lower than 3.3V. Allaboutee developed some open source, easy to use libraries and examples:

Expander pinout:

  • VDD – 2.7V to 3.6V (If using with ESP8266 you’ll have to use 3.3V for this pin).
  • GND – Ground
  • SCL – I2C clock (connect this to GPIO0 of the ESP8266)
  • SDA – I2C data (connect this to GPIO2 of the ESP8266)
  • A0 -> A7 – Analog inputs (0v to 3.3V)

You can not use two or more boards to have more than 8 analog inputs because the chip’s I2C is factory fixed. If you do not connect a pin to anything, it will be “floating”, that means it’s value is not defined so it can be anything.

This video shows the expander board in action:

ESP8266 expander is available for $10 at tindie, it may be a bit expensive but with the cost of ESP8266, it is a very cheap alternative of the $100 Arduino Wifi shield.

“If you were to desire an Arduino based and thus easy to program, WiFi enabled microcontroller, then you could purchase an Arduino WiFi shield for $100+, OR you could instead get an esp8266 w/ breakout board for $6, A 3.3v voltage regulator for $1, the analog input expander $10 and an FTDI to USB 3.3v programmer $3.” – A review by Erol

ESP32 Review: Using the ESP32 with the Arduino IDE

In this video educ8s.tv reviews the ESP32, the successor of the popular ESP8266!

Hello guys, I am Nick and welcome to educ8s.tv a channel that is all about DIY electronics projects with Arduino, Raspberry Pi, ESP8266 and other popular boards. You can subscribe to our channel by clicking on this button. Today I am very excited because we are going to see this new board which uses the new ESP32 chip and we are going to learn how to program it using the Arduino IDE. The ESP32 chip will be the heart of most of the projects we are going to build in the near future, because it offers everything we need in one low cost solution!

ESP32 Review: Using the ESP32 with the Arduino IDE [Link]

Control AC Voltages Safely And Easily with Sugar Device

Sugar Device is a tool designed to control AC Voltage and it promises to change the way you control AC applications forever.
Sugar team is targeting hobbyists, students, teachers and engineers to push their application to the next level, since it makes AC control easy, safe and compatible with a lot of development platforms. The mechanical case that comes with Sugar is offering protection to users while using AC voltages and preventing any electrical shock resulted by misuse.

You can control AC voltage using Sugar with two different ways: ON-OFF switch, and AC output voltage control. You can power Sugar using the AC C14 cable. This voltage provided is used to power the load connected and the internal circuits. The fuse holder is accessible, you can replace it easily whenever you need.

For the output, Sugar is providing a universal output socket to connect your load, and it is compatible with all AC power cable types. Sugar can work with 110V/220V and with 50Hz/60Hz. You can switch between the two options using a switch provided with two indicator LEDs.

Sugar Device also can be connected with 3.3V and 5V development boards like Arduino, Raspberry Pi, and Beaglebone using the RJ12 cable. Sugar had designed  a RJ Connector breakout to make it possible to connect your board and it will be available in all kits. Controlling the AC loads using your PWM pins and Sugar will be so simple.

This 150x120x47 mm size device supports WiFi and Bluetooth and is IoT ready. For example, ESP8266 can directly control Sugar Device since it has PWM output with Frequency of 1KHz.

Sugar Device comes in two editions: Sugar 300, a white device that control up to 300W, and Sugar 1000, a black one that can control up to 1000W. The second one is offered for hackers and professionals where the first is for newbies.

Sugar Device is now live on a crowdfunding campaign on Indiegogo and still has a month to go. You can pre-order your Sugar 300 with a Power cord C14, RJ12 Cable, Sugar RJ Breakout and two AC fuse for only $49! Check the campaign video for more information.

In this video you can watch Sugar Device in Action, check it out!

Sugar device is the tool you need to expand the scope of your projects and control AC loads safely. Your dream of making your home smart can come true now with the use of this device. This device had came to life due to a cooperation with Fablab dynamic in Taipei, Taiwan. Such a cooperation will make it uncomplicated for makers to produce their own devices. Mohannad Rawashdeh and his team had tested many applications and used different platforms to ensure that Sugar is safe, practical and easy for everyone to use.

“When I was looking  for FabLab in Taiwan, I found FabLab Dynamic. They offered me a free space inside the lab to work and offered me all help I need to find component resources, using machines and instruments and contact with designers I need for my project” – Mohannad Rawashdeh, founder of Sugar Device and an electronics engineer.

You can check the campaign page to know the offers and full specifications. More information are provided on Sugar Device website. Many tutorials are added to this page and source files will be added soon on Github.

ESP8266 PlaneSpotter

@ blog.squix.org has published his latest project.

After many hours of work I’m very happy to finally publish all the sources for the ESP8266 PlaneSpotter project. It is not yet really in a V1.0.0 state but I’m sure with the help of the community it will quickly get better. While this post is more a “making-of” you can find build instructions on Github: https://github.com/squix78/esp8266-plane-spotter-color

ESP8266 PlaneSpotter – [Link]

RELATED POSTS