Tag Archives: RAM

Hardkernel Launches A Single-unit Version Of Its 32-core Odroid-MC1 Cluster Computer

Hardkernel has produced a single-unit version of its four-unit, 32-core Odroid-MC1 cluster computer for running Docker SwarmBuild Farm, and other parallel computing applications. The design offers greater flexibility for users to combine Odroid-MC1 Solo units for a “single unit, 2, 3, 4, 5, 6, or n stackable cluster”. The octa-core Odroid-MC1 Solo costs $48. Combing one or more Solo units with the original 4-unit MC1 acts as a single cluster.

Odroid-MC1 Solo
Odroid-MC1 Solo

The Odroid-MC1 Solo and Odroid-MC1 use an Odroid-XU4S SBC that is similar to the SBC that powers the Odroid-HC2 network attached storage (NAS) device. Both boards are smaller, stripped-down, headless version of the open-spec Odroid-XU4 SBC.

Like the Odroid-HC2 board, the MC1 board has removed the XU4’s HDMI port, 2x USB 3.0 ports, optional eMMC, and 30- and 12-pin GPIO connectors. Like the Odroid-XU4, the boards are powered by the Samsung Exynos5422 SoC with four Cortex-A15, four Cortex-A7 cores, and Mali-T628 GPU.

All these boards are equipped with 2GB LPDDR3 (in a PoP configuration), as well as a GbE port, USB 2.0 host port, and a bootable microSD slot with UHS-1 support. The XU4s used on the Odroid-MC1 lacks the one additional feature found on the HC2 NAS computer that is a USB 3.0-based SATA port.

The new Odroid-MC1 Solo board, including the stacking case, measures 92 x 42 x 29mm. These boards are powered by a 5V/4A power supply. A UART, an RTC with battery connector, as well as “M3 x 8mm” self-tapping screws are also there on this board. The XU4-compatible Linux image is based on Kernel 4.14 LTS.

Key Specs:

  • CPU  Samsung Exynos5422 ARM® Cortex™-A15 Quad 2.0GHz/Cortex™-A7 Quad 1.4GHz
  • DRAM Memory  2Gbyte LPDDR3 RAM PoP (750Mhz, 12GB/s memory bandwidth, 2x32bit bus)
  • GPU  Mali™-T628 MP6 OpenGL ES 3.1 / 3.0 / 2.0 / 1.1 and OpenCL 1.2 Full profile
  • Micro-SD Slot  UHS-1 compatible micro-SD slot up to 128GB/SDXC
  • USB2.0 Host  HighSpeed USB standard A type connector x 1 port
  • LEDs  Power, System-status
  • Gbit Ethernet LAN  10/100/1000Mbps Ethernet with RJ-45 Jack ( Auto-MDIX support)
  • Power Input  DC Barrel Jack Socket 5.5/21.mm for 4.8V~5.2V input
  • Size   92 x 42 x 29 mm

The Odroid-MC1 Solo is available now for $48. More information may be found at Hardkernel’s Odroid-MC1 Solo shopping page.

New Powerful Nano-ITX Form Factor ADL120S Single Board Computer For IoT

USA based ADL Embedded Solutions has introduced a new rugged, Nano-ITX form factor ADL120S single board computer (SBC). It is mainly produced for IoT, networking, and cyber-security applications. The highlighted feature of this SBC is its wide variety of PCIe expansion slots. The SBC includes 8x stackable PCIe interfaces, as well as optional custom expansion board services. Also, you get dual M/2 Key-B 2280 interfaces that support PCIe/SATA with USB 3.0. Networking is taken care with 4x Gigabit Ethernet ports (1x with PXE boot and WoL).

ADL120S Single Board Computer by ADL Embedded Solutions

 

The ADL120S runs Linux or Windows OS on dual- or quad-core Intel 6th Gen (“Skylake“) processor and Celeron CPUs that support an LGA1151 socket. There’s an Intel Q170 chipset on ADL120S instead of a Q170HDS. The supported SKUs include the quad-core 2.4GHz Core i7-6700TE, the dual-core 2.7GHz i3-6100TE, and 2.3GHz Celeron G3900TE.

The board has a compact dimension of 120 x 120mm in a Nano-ITX form factor but has a high vertical profile with 4x USB 3.0 ports piled on a single column. This high-rise board also includes 4x GbE ports, one of which has WoL and PXE Boot, and a pair of DisplayPort 1.2 ports with 4096 x 2304 resolution at 60Hz refresh rate.

The ADL120S comes with up to 32GB DDR4 RAM and offers a wide-range 20-30VDC (optional 12-24V or 20-36V) input and RTC (Real time clock) with battery. The boards with -20 to 70°C or -40 to 85°C temperature range of usability are available.

The SBC is also praised for its high MTBF, long-life availability, hardware and firmware revision control, obsolescence management, and technical, engineering and design support, on their website’s product page.

No pricing or availability information was provided for the ADL120S.

Inside Intel’s first product: the 3101 RAM chip held just 64 bits

Ken Shirriff takes a look inside the 3110 RAM chip from Intel. He writes:

Intel’s first product was not a processor, but a memory chip: the 31011 RAM chip, released in April 1969. This chip held just 64 bits of data (equivalent to 8 letters or 16 digits) and had the steep price tag of $99.50. The chip’s capacity was way too small to replace core memory, the dominant storage technology at the time, which stored bits in tiny magnetized ferrite cores. However, the 3101 performed at high speed due to its special Schottky transistors, making it useful in minicomputers where CPU registers required fast storage. The overthrow of core memory would require a different technology—MOS DRAM chips—and the 3101 remained in use in the 1980s.3

Inside Intel’s first product: the 3101 RAM chip held just 64 bits – [Link]

The New Fujitsu ReRam

Resistive random-access memory (RRAM or ReRAM) is a type of non-volatile (NV) random-access (RAM) computer memory that works by changing the resistance across a dielectric solid-state material often referred to as a memristor.

Fujitsu Semiconductor has just launched world’s largest density 4 Mbit ReRAM product for mass production: MB85AS4MT. Partnering with Panasonic Semiconductor Solutions, this chip came to life.

The MB85AS4MT is an SPI-interface ReRAM product that operates with a wide range of power supply voltage, from 1.65V to 3.6V. It features an extremely small average current in read operations of 0.2mA at a maximum operating frequency of 5MHz.

It is optimal for battery operated wearable devices and medical devices such as hearing aids, which require high density, low power consumption electronic components.

20161029154434_mb85as4mt

Main Specifications
  • Memory Density (configuration): 4 Mbit (512K words x 8 bits)
  • Interface: Serial peripheral interface (SPI)
  • Operating power supply voltage: 1.65V – 3.6V
  • Low power consumption:
    • Read operating current: 0.2mA (at 5MHz)
    • Write operating current: 1.3mA (during write cycle time)
    • Standby current: 10µA
    • Sleep current: 2µA
  • Guaranteed write cycles: 1.2 million cycles
  • Guaranteed read cycles: Unlimited
  • Write cycle time (256 byte page): 16ms (with 100% data inversion)
  • Data retention: 10 years (up to 85°C)
  • Package: 209 mil 8-pin SOP

This figure shows the block diagram of the chip:

reram

MB85AS4MT is suitable for lots of applications like medical devices, and IoT devices such as meters and sensors. In addition, the chip has the industry’s lowest power consumption for read operations in non-volatile memory.

For more information about MB85AS4MT, you can check the datasheet and the official website.

Samsung launches industry’s first 12Gb LPDDR4 DRAM

5-samsunglaunc

by Samsung:

Samsung Electronics announced that it is mass producing the industry’s first 12-gigabit (Gb) LPDDR4 (low power, double data rate 4) mobile DRAM, based on its advanced 20-nanometer (nm) process technology.

The newest LPDDR4 is expected to significantly accelerate the adoption of high capacity mobile DRAM worldwide. The 12Gb LPDDR4 brings the largest capacity and highest speed available for a DRAM chip, while offering excellent energy efficiency, reliability and ease of design – all essential to developing next-generation mobile devices.

Samsung launches industry’s first 12Gb LPDDR4 DRAM – [Link]