Tag Archives: MSP430

Contactless Infrared Thermometer (Pyrometer) using MLX90614 and MSP430


mcs.uwsuper.edu has build a contactless thermometer based on MLX90614 sensor and MSP430 mcu.

The device is designed for contactless measuring and monitoring temperature of objects. It is built on Melexis MLX90614 sensor and can measure temperatures in the range from -70°C to +380°C with 0.5°C accuracy and 0.01°C resolution. The period of measurements can be set in the menu from 1 sec to 1 min in 10 sec increments. It is also possible to record the temp measurements and upload them to a computer via the serial interface through X1 and an external level converter.

Contactless Infrared Thermometer (Pyrometer) using MLX90614 and MSP430 – [Link]

LCD clock with 4″ display


mcs.uwsuper.edu has build a big LCD clock based on MSP430 mcu and DS3231 RTC clock chip. They write:

The clock is built on a 4″ (101 mm) LCD displays OD-103 manufactured by Orient Display. The LCD provides high contrast of digits and easy reading from a large distance. The unit runs on batteries and can also be powered from mains. Here is how it looks under direct sun.

The time keeping is provided by DS3231 RTC chip with an integrated high accuracy (± 5ppm) MEMS crystal. This makes PCB design very simple, as one does not need to take care on special traces design around the crystal.

LCD clock with 4″ display – [Link]

Open Badge: The LED Badge


Rohit Gupta published a new build, the OpenBadge

The major elements on the PCB were:
– LED Matrix
– A MSP430G2553 microcontroller brain
– A ULN2803 Darlington Driver to sink the current
– A USB connector to charge the battery
– A SBW connector to program the MSP430
– A Switch to change the message
– A Li-Ion battery from a Discarded Phone
– Current limiting and Pull up resistors
– Decoupling Capacitors
– A REG1117 Regulator for MSP430

Open Badge: The LED Badge – [Link]

MSP430 FET using TI Launchpad


embedded-lab.com writes:

TI’s MSP430 family of MCUs are low-power and RISC-based powerful mixed-signal processors that require a Flash Emulator Tool (FET) for in-system programming. The official MSP430 FET from TI costs about $100. Vincete describes a way to construct a MSP430 FET using TI’s popular and in-expensive Launchpad board.

MSP430 FET using TI Launchpad – [Link]

Microduino-Joypad: an open source 8-bit game console & more!


Microduino-Joypad is … an 8-bit game console + open source + UPin27 + AVR,STM32,MSP430,51 compatible + smart controller == Awesome!  by Microduino Studio:

Microduino studio launched the first kickstarter in September 2013, introducing the brand new Arduino-compatible development board—Microduino. We achieved success with the unique Upin27 interface, compact size, rich expansion boards as well as many applications. Over the past year, Microduino community has been growing rapidly. Now we have nearly 10,000 players worldwide.

At the 25th anniversary of the Gameboy console, we are now releasing Joypad – 8-bit multi-functional game console to show our respects to Gameboy–the most classic game console in the history.

With this elegantly designed little Joypad, we are hoping to bring you the greatest joy from your childhood memory. The best thing is it’s completely open source and you can even create and develop your own game to inspire your imagination. Moreover, it’s not only a game console, it’s also a remote controller for other devices, such as Quadcopter, robot and cell phone, etc.

Microduino-Joypad: an open source 8-bit game console & more! – [Link]

µTetris with MSP430

This is a little Tetris game. It is built with a Nokia 5110 cellphone LCD and a Texas Instruments MSP430G2553 microcontroller. The system without the backlight uses less than 1mA. It is written in C with the TI Code Composer Studio.

µTetris with MSP430 – [Link]

Experiment with MSP430 FRAM board via web interface

by scienceprog.com

Over a week ago I’ve got a notice that Texas Instruments (TI) is giving away a 50% coupon for MSP430_FRAM related devices. Without hesitation ordered their MSP-EXP430FR5739 TI experimenters board that price went down to $14.50 including free shipping.

by embedds.com

MSP EXP430FR5739 FRAM based microcontroller board is interesting piece of hardware. It features FRAM memory instead of Flash which is claimed to withstand almost unlimited number of Reads and Writes. It is also faster. It can substitute an EEPROM on board. But it is not very popular technology due to different manufacturing. On this development board there is MSP430 microcontroller which has 16KB FRAM, 1KB of SRAM. It carries eight LEDS, MTC thermistor, 3 axis digital accelerometer, optional LDR, couple buttons. So this is great for many uses.


Experiment with MSP430 FRAM board via web interface – [Link]

Getting Started With The MSP430


This tutorial is an introductory tutorial on getting started with the MSP430 series of controllers by Texas Instruments. muaz @ zeroohm.ae writes:

There are millions and trillions of ways to start using microcontrollers. Hobbyist or people who find hard to code normally prefers Arduino as their coding environment, while engineers might prefer using AVR/PIC. The MSP430 microcontroller is an extremely versatile platform which supports many applications. With its ability to consume ultra-low power it enables the designing engineer to meet the goals of many projects. It has, of course, its limitations. It is inclined mostly towards low energy and less intensive applications that operate with batteries, so processing capabilities and memory, among other things, are limited. However it’s still called a mixed-signal processor and is capable of doing some sort of speech processing. Before starting with some exposure to hardware and software part, I assume that you all have some sort of programming knowledge in embedded c. Even if you know java or c++, you will still be able to adapt to the tutorials easily as the logic will remain the same, only the code language changes.

Getting Started With The MSP430 – [Link]

Interfacing the DAC7564 to an MSP430


Juan has written an article detailing how to use an MSP430 with a DAC7564:

The DAC7564 is a low-power, voltage-output, four-channel, 12-bit digital-to-analog converter (DAC). The device includes a 2.5V, 2ppm/°C internal reference. The device is monotonic, provides very good linearity, and minimizes undesired code-to-code transient voltages (glitch).


Interfacing the DAC7564 to an MSP430 – [Link]