Photovoltaic category

Hybrid solar panel can generate power fro rain too

Researchers Develop New Hybrid Solar Panel That Can Generate Power From Rain Too

The researchers at Soochow University in China, have published a paper on the hybrid device that is able to harness the power of sun and rain using a hybrid panel. By attaching a transparent nanogenerator to a silicon solar cell, researchers have designed a device that harvests solar energy in sunny conditions and the mechanical energy of falling raindrops in rainy conditions. The dual functionality of this hybrid panel may provide a way to collect energy with greater efficiency in the midst of constantly changing weather conditions.

Hybrid solar panel can generate power fro rain too
The hybrid solar panel can generate power fro rain too

The hybrid device consists of a conventional silicon solar cell and a Triboelectric Nanogenerator (TENG), which turns the mechanical energy of falling raindrops into electricity. Although previous research has shown that these two types of devices can be connected with an extra wire, in the new design the solar cell and TENG are integrated by sharing a mutual electrode.

The biggest breakthrough in this work is that an integrated generator composed of a solar cell and a TENG was demonstrated through sharing a mutual electrode,

Zhen Wen at Soochow University said,

Compared to previous work, the simple design of the mutual electrode reduces the number of functional layers, which greatly improves the output efficiency.

The mutual electrode not only results in a more compact design, but it also offers advantages to both the solar cell and TENG. In particular, the TENG protects the solar cell by acting as a waterproof barrier and prevents water from penetrating the silicon. The textured electrode surface also greatly overcomes unwanted reflection of light, enhancing light harvesting of the solar panel. The textured surface results in a greater contact area between the TENG and falling raindrops, which improves the overall performance of the nanogenerator.

Due to the unique design, it has advantages of being lightweight and having a high efficiency, The team is now designing a fiber-shaped device and expect to weave them together as a fabric. In near future, it is possible to fabricate such clothing that can generate electricity from sunshine and raindrops, and then use this electricity to power wearable electronic devices.

DC-DC converter starts up and operates from a single photocell

by Marian Stofka @ www.edn.com:

The bq25504 from Texas Instruments is a good candidate to become a milestone on the road to micro-power management and energy harvesting. A prominent feature of this IC is its ability to start up at a supply voltage as low as 330 mV typically, and 450 mV guaranteed. With an SMD inductor and a few capacitors and resistors, it forms a dc-dc converter with a high power efficiency that is unprecedented, especially in the ultralow-power region.

DC-DC converter starts up and operates from a single photocell – [Link]

Solar energy harvester IC that operates with indoor lighting

Saelig Company, Inc. (www.saelig.com) has introduced the patented Sol Chip Saturn802 Energy Harvester IC – a unique photovoltaic (PV) cell which can produce output voltage levels of 0.75V, 1.5V, 2.25V, 3.0V, 4.5V, and 9V, which existing solar cells cannot do.  The maximum power which can be obtained in full daylight is around 10mW, or 55uW in office lighting, so the Saturn802 IC is targeted at low-power applications. The size of the die is approximately 1cm by 1cm, and the stable voltage levels are available from separate pins of the device.  The IC can be used with or without a back-up battery.

Sol Chip’s unique technology integrates solar energy conversion principles with very large scale integration (VLSI) techniques to produce a unique ambient light harvesting device that combines photovoltaic layer and microchip circuitry in layers on the same substrate.  Although solar cells have been around for a long time, with microchips being the mainstay of electronic devices, no company in the semiconductor industry has successfully integrated solar cells with standard chip manufacturing processes in a cost effective way.

The Sol Chip Energy Harvester allows designers to build low-powered products that can recharge themselves.  All that is needed is a small window in the product design or a transparent cover to allow light to reach the surface-mounted Saturn802 chip.  This eliminates the need for a battery in low power products, thus removing maintenance and environmental waste issues. Incorporating the Sol Chip Energy Harvester in product designs is ideal for hard-to-reach locations where battery use and routine replacement is inconvenient or prohibitively expensive.

Applications suited to the Saturn802 include wireless sensor networks, drip-irrigation systems, wearable electronics, smart city solutions like parking or security and utility meters, data loggers, shelf labeling, GPS emergency locators, animal tracking devices, GPS asset/container tracking,  autonomous environmental and pollution measurement devices, and RFID devices.   Saturn802 designs can operate continuously for more than ten years with no maintenance requirements.  In wireless products this also eliminates the significant costs and time associated with wiring connections for the deployed sensors, reducing system cost of ownership.

Forming an “everlasting battery”, the Saturn802 solar cells are available on an evaluation board, the Eval-802, allowing users to develop their own power regulation circuitry for handling differing light and load conditions.  For a ready-made solar solution using the Saturn802 cell, the SCP-2801 board provides all necessary circuitry to provide constant 24/7 output.

Made in Israel by Sol Chip Ltd., an innovative solar products manufacturer, the Sol Chip Saturn802 Energy Harvester IC and the SCP-2801 Evaluation Kit are available now from Saelig Company, Inc., Sol Chip’s authorized North American distributor.

Perovskite solar cells stabilized at 19% efficiency

image: ibnservice.com

Researchers at EPFL in Switzerland have found that adding large organic compounds called guanidinium (CH6N3+) into methylammonium lead iodide perovskite solar cells can provide stable power efficiency of 19%, approaching that of silicon cells. by Nick Flaherty @ eenewseurope.com:

The lab of Mohammad Khaja Nazeeruddin at EPFL Valais Wallis, with colleagues at the University of Cordoba and the Helmholtz Institute in Berlin, has discovered that they can improve the perovskite stability, overcoming what is known as the “Goldschmidt tolerance factor limit.” This is an indicator of the stability of a perovskite crystal, which describes how compatible a particular ion is to it. An ideal Goldschmidt tolerance factor should be below or equal to 1; guanidinium’s is 1.03.

Perovskite solar cells stabilized at 19% efficiency – [Link]

AMSAT MPPT

by Bryce Salmi @ faradayrf.com:

The Radio Amateur Satellite Corporation, AMSAT, recently designated RadFxSat as AO-91 after its successful deployment from a Delta II rocket as a secondary payload to NASA’s JPSS-1. RadFxSat is the first of several AMSAT satellites which are flying a Maximum Power Point Tracker (MPPT) designed and built by Brent and I as a continuation of our Rochester Institute of Technology (RIT) senior design project. The story of the Fox-1 MPPT is a great example of how amateur radio is what you want it to be.

AMSAT MPPT – [Link]

Grid-connected solar microinverter reference design

A PDF from Microchip on the theory behind inverter design connected to grip power.:

There are two main requirements for solar inverter systems: harvest available energy from the PV panel and inject a sinusoidal current into the grid in phase with the grid voltage. In order to harvest the energy out of the PV panel, a Maximum Power Point Tracking (MPPT) algorithm is required. This algorithm determines the maximum amount of power available from the PV module at any given time. Interfacing to the grid requires solar inverter systems to abide by certain standards given by utility companies. These standards, such as EN61000-3-2, IEEE1547 and the U.S. National Electrical Code (NEC) 690, deal with power quality, safety, grounding and detection of islanding conditions.

Grid-connected solar microinverter reference design – [Link]

Researchers Developed Highly Durable Washable And Stretchable Solar Cells

Scientists of Japanese research institute RIKEN and the University of Tokyo have successfully developed a product that allows solar cells to continue to provide solar power after being washed, stretched and compressed. Takao Someya of Riken Center for Emergent Matter Science, a designated national R&D Institute in Japan, led the research team.

Washable and stretchable solar cell
Washable and stretchable solar cell

The research results were published in the journal Nature Energy and illustrated a photovoltaic material that could be used to make washable outer garments and wearable devices. The researchers say that the innovated solar cells will be a power source to low-power devices and can also be worn concurrently. This innovation might solve one of the biggest challenges of the Internet of Things (IoT), the requirement of a reliable power source to keep all devices connected.

The newly invented solar cells could power wearable devices that include health monitors and sensors for analyzing the heartbeat and body temperature. This could make prevention and early detection of potential medical problems possible. Though the concept of wearable solar cells is not unique, the previous wearable solar cell solutions suffered from the lack of one vital property i.e. long-term stability in air and water, including resistance to deformation.

The recent stretchable solar cell innovation has successfully achieved all of the most important features and is creating the way for the top-notch quality of modern wearable technology. The material on which their new device is based on is called PNTZ4T – a highly efficient polymer solar cell capable of small photon energy loss. The scientists deposited the device onto a parylene film which was then placed onto an acrylic-based elastomer. The construction method has proved to be particularly very durable.

The device produced 7.86 milliwatts per square meter based on a sunlight simulation of 100 milliwatts per square meter before considering resistance and durability. It showed the least decrease in efficiency when soaked in the water and when stretched. The efficiency decreased by only 5.4 percent and 20 percent respectively. Kenjiro Fukuda of RIKEN Center for Emergent Matter Science said,

We were very gratified to find that our device has great environmental stability while simultaneously having a good efficiency and mechanical robustness. We very much hope that these washable, lightweight and stretchable organic photovoltaic will open a new avenue for use as a long-term power source system for wearable sensors and other devices.

Bismuth Oxyiodide (BiOI)—A Non-toxic Alternative To Solar Cells

Bismuth is considered as a “green-element” and bismuth-based compounds are gaining attention as potentially non-toxic and defect-tolerant solar absorbers. The researchers of the University of Cambridge and the United States developed theoretical and experimental methods to show that bismuth, which sits next to lead (Pb) on the periodic table, can be used to make inexpensive solar cells.

Bismuth oxyiodide light absorbers
Bismuth oxyiodide light absorbers

The study suggests that solar cells including bismuth can have all the exceptional properties of lead-based solar cells but without any worries about toxicity. Another study by a different group discovered that bismuth-based solar cells have the ability to achieve a conversion efficiency of 22% which is comparable to the conversion efficiency of most advanced solar cell available in the market.

Many of the new materials recently investigated show limited photovoltaic performance. Bismuth Oxyiodide (BiOI) is one such compound and it is explored in detail through theory and experiment. Most of the solar cells commercially and domestically used are made from silicon (Si) which is efficient enough but has very low defect tolerance compared to bismuth oxyiodide. Low defect tolerance in silicon implies that the silicon needs to have very high levels of purity, making the production process energy-intensive.

Over the past several years researchers have been looking for an alternative to silicon for making solar cells cost effectively. The most promising group of these new materials are called hybrid lead halide perovskites. Unlike silicon, they don’t need such high purity levels. Hence, production is cheaper. But, the lead contained within perovskite solar cells represents a definite risk to all living beings and the environment. So, scientists are searching for non-toxic alternatives without compromising the performance.

Dr. Robert Hoye of Cambridge’s Cavendish Laboratory and Department of Materials Science & Metallurgy said,

We wanted to find out why defects don’t appear to affect the performance of lead-halide perovskite solar cells as much as they would in other materials.

The researchers are trying to figure out what’s special about the lead halide perovskites so that they can replicate their properties using non-toxic materials like bismuth.

Their research found that bismuth oxyiodide is as defect tolerant as lead halide perovskites are. Another interesting fact is, bismuth oxyiodide is stable in air for at least 197 days which is even better than some lead halide perovskite compounds. By sandwiching the bismuth oxyiodide between two oxide electrodes, the researchers successfully converted 80% of light to electrical charge.

Next Generation Solar Cell To Absorb Nearly All Solar Spectrum

Next Generation Solar Cell That Can Capture Nearly All Energy of Solar Spectrum

Researchers developed a multijunction solar cell on a GaSb substrate that can efficiently convert the long-wavelength photons typically lost in a multijunction solar cell into electricity. This prototype cell has an efficiency of 44.5% which is higher than conventional solar cells.

Next Generation Solar Cell To Absorb Nearly All Solar Spectrum
Next Generation Solar Cell To Absorb Nearly All Solar Spectrum

A GaAs-based cell is stacked mechanically with the GaSb-based materials to create a four-terminal, five junction cell with a spectral response range covering the region containing greater than 99% of the available direct-beam power from the Sun reaching the surface of the Earth. By comparison, the most typical solar cell can convert only one fourth of the available energy into electricity.

The working principle of this new solar cell is slightly different than the commonly available one. The cell is assembled in a mini-module that has a lens with a geometric concentration ratio of 744 suns. The lenses to concentrate sunlight onto tiny, microscale solar cells. As the solar cells have a very tiny form factor of  1 mm², solar cells using more complicated materials can be developed cost effectively.

The stacked cell acts like a filter with a particular material in each layer to absorb a specific range of wavelength of sunlight. The stacking procedure uses the transfer-printing technique which enables three dimensional modeling of these super-tiny devices with a high degree of precision.

Around 99 percent of the power contained in direct sunlight reaching the surface of Earth falls between wavelengths of 250 nm and 2500 nm. The entire range is not accessible by conventional solar panels as they are made from abundant, cheaper materials, such as silicon. Matthew Lumb, the lead author of the study and a research scientist at the GW School of Engineering and Applied Science, said,

Our new device is able to unlock the energy stored in the long-wavelength photons, which are lost in conventional solar cells, and therefore provides a pathway to realizing the ultimate multi-junction solar cell.

The cost of this specific solar cell is pretty high due to the high-end materials used and complex technologies implemented. However, the researchers achieved the upper limit of possibility in terms of efficiency. The new solar cell shows much promise in spite of being highly expensive. perhaps in future, the production cost can be reduced and the similar solar cell will be available commercially in the market.

Using a supercapacitor for power management and energy storage with a small solar cell

& @ edn.com writes:

In Part 1 of this series, we have reviewed solar cell performance, how to select and size the supercapacitor, requirements of supercapacitor charging circuits and charging IC characteristics. We will now use two case studies to illustrate these properties in detail.

Using a supercapacitor for power management and energy storage with a small solar cell – [Link]