Tag Archives: NXP

Emcraft’s Unveils a i.MX 8M System-On-Module and a $349 Starter Kit

Emcraft, which is known primarily for its work in porting uClinux to various high-end MCUs recently unveiled its NXP i.MX 8M System On Module (SOM) which is Linux driven and a Starter Kit for the i.MX 8M SoM. The starter kit gives Gbe, HDMI 2.0, USB 3.0, USB Type C and a Raspberry compatible 40 pin connection.

Emcraft i.MX 8M System-On-Module (SOM)

The 60 mm * 80 mm module is a mezzanine module that supports 512MB to 4GB of DDR3L or LPDDR4 RAM, up to 64GB eMMC 5.0 flash, a PMIC interface that supports WiFi-ac and Bluetooth 4.2 module with dual U.FL connectors. The i.MX 8M features up to four Cortex-A53 cores at 1.5GHz and a Cortex-M4 core for low-power and real-time operation.

The Emcraft i.MX 8M System-On-Module (SOM) supports only the quad-core version of the dual-core model. The i.MX 8M SoM hooks up to the Carrier board through a four 80-pin connectors. The i.MX 8M SoM starter kit is made up of two major items:

  • The i.MX 8M System On Module (SOM-IMX8M).
  • The development baseboard (IMX8M- SOM -BSB).

The i.MX 8M SoM Starter Kit extends out the features of the i.MX 8M SoM. The board features GbE, USB Type-C, USB 3.0 host, and micro-USB serial console ports. It also comes with some media interfaces like an HDMI 2.0 port, dual MIPI-CSI camera interface, and an audio I/O jack. The BSB baseboard also comes with a Raspberry Pi compatible 40 pin header, a 12V jack, dual Light Emitting Diodes (LEDs), an IR receiver, reset and multiple push buttons and a boot selection switch. The board supplies the Arm JTAG and Arm JTAG+ETM debug connectors. The block diagram also shows a Peripheral Component Interconnect Express-based M.2 expansion socket, a Real Time Clock with battery holder, and a Secure Digital (SD) slot.

Starter Kit

Emcraft supports Linux as an operating system for the i.MX 8M Cortex-A53 processor core. All i.MX 8M System-On-Modules come preloaded with Linux and U-Boot. Full source files of U-Boot and the Linux BSP are provided for free download, along with the Linux distribution and cross-development environment. Both U-Boot and Linux are royalty-free making it easy to incorporate into commercial products.

The Starter kit is available for pre-orders online for $349 and has shipping scheduled for May 2018. More information about the i.MX 8M System On Module and the Starter kit can be found on the product page. You can find documentation about setting up the Linux environment for the Emcraft i.MX 8M System-On-Module (SOM) here.

i.MX8 Powered Nitrogen8m Single Board Computer

Boundary Devices is the company who launched the i.MX6 based Nitrogen6 in 2012, a globally adopted i.MX 6 SABRE Lite development board (now BD-SL-i.MX6). The company has recently announced the availability of its new Nitrogen8M SBC (Single Board Computer) that runs Linux or Android on a quad-core i.MX8M processor. The NItrogen8M will be the first commercially designed and tested i.MX 8M based SBC solution to be available to the embedded market.
Nitrogen8M

The i.MX 8M family of application processors from NXP is based on Arm® Cortex®-A53 and Cortex-M4 cores which provide industry-leading audio, voice and video processing capabilities. They offer support for video quality with full 4K UltraHD resolution and HDR (Dolby Vision, HDR10, and HLG), DSD512 audio capability, flexible memory options as demonstrated in the Nitrogen8, and many other features.

The NXP’s latest i.MX 8M Quad processor powers the Nitrogen8M, an upgrade from the i.MX7 based Nitrogen7. The i.MX 8MQ features 4 Cortex-A53 (1.5GHz) and 1 Cortex-M4F (266MHz) cores. The Nitrogen8M will come standard with 2GB of LPDDR4 of RAM with a 4GB version also available. It features a microSD Card slot, an optional 8GB eMMC version expandable to 128GB,  USB 3.0 for high-speed data communication and of course adhering to the industry latest trend. At 136.7 x 87mm, the Nitrogen8M is slightly larger than the i.MX7 based Nitrogen7 and the earlier i.MX6-based Nitrogen6.

Nitrogen8M includes the latest in network connectivity options to serve IoT applications that employ edge, cloud, and fog computing. The SBC comes with a Gigabit Ethernet port as well as the BD-SDMAC, a pre-certified WiFi 802.11ac + Bluetooth 4.1 module based on the QCA9377.  It also includes HDMI (4K@60fps) and 4-lane MIPI-DSI (1080p) display connections; two, 4-lane MIPI-CSI; headphone, microphone, and amplifier interfaces. Nitrogen8M will quickly find applications in the areas of smart-home, smart-speaker, industry, display applications, and many more.

The following are the specification of the Nitrogen8m SBC:

  • CPU — i.MX 8M Quad Core (x4 Cortex-A53 @ 1.5GHz; Cortex-M4 @ 266MHz)
  • RAM — 2GB LPDDR4 (4GB Optional)
  • Storage — micro SD slot or 8GB eMMC (upgradeable to 128GB)
  • NOR — 16MB (QSPI)
  • GPU — Vivante GC7000Lite
  • Camera — x2 4-lane MIPI-CSI
  • Display —
    • HDMI (w/CEC)
    • MIPI DSI
  • Wireless —
    • Wi-Fi 802.11 ac
    •  Bluetooth 4.1 BD-SDMAC Module (QCA9377)
  • Networking — Gigabit Ethernet port
  • Other I/O –
    • 3x USB 3.0 Host ports
    • 1x USB 3.0 OTG port
    • 3x I2C
    • 1x SPI
    • 3x RS-232
    • 1x SD/MMC
    • 1x RTC + battery
    • 2x PCIe (1 Mini-PCI-E connector, one on expansion connector)
    • 1x JTAG
  • Power — 5V DC input
  • Operating Temperature — 0 to 70°C (Industrial Optional)

The Nitrogen8M is available now for pre-order, with boards beginning to ship in Spring 2018. Boundary Devices is offering the following three options:

Though the Nitrogen8M is launching with the i.MX 8M Quad processor, an i.MX 8M Dual and QuadLite versions are available on request. More information including a full list of specifications and availability can be found on the Nitrogen8M product page.

InnoComm NXP i.MX8M System on Module – An Advanced Video Processing SoM with Connectivity

Last year (2017), NXP announced its new applications processors, the i.MX 8 series. The i.MX 8M family of applications processors based on Arm® Cortex®-A53 and Cortex-M4 cores provide industry-leading audio, voice and video processing for applications that scale from consumer home audio to industrial building automation and mobile computers. NXP announced a select group of partners that have been engaged in the development of an ecosystem for the i.MX 8M family processor. Taiwan based Innocomm Mobile Technology was one of those selected partners among others and have announced their NXP i.MX 8M quad-core system-on-module – called WB10 with wireless and wired connectivity options.

Innocomm WB10

Innocomm WB10 is a next generation Wireless System-on-Module powered by the NXP i.MX 8M SoC. It offered advanced video processing capabilities and designed for application in the areas of internet audio, home entertainment, smart speakers among many others. With inbuilt Wi-Fi, Bluetooth and Ethernet connectivity options, the WB10 can quickly find applications in the trending areas of Internet of Things (IoT) and Industrial applications.

The WB10 is a small module and measured at just 50 x 50 mm. The WB10 module comes with only 2GB LPDDR4 RAM and an 8GB eMMC flash memory. It provides onboard support for WiFi 802.11 a/b/g/n/ac, Ethernet controller with MIMO 2 x 2 and Bluetooth 4.2. Apart from impressive connectivity options, you also get a host of other interfaces like – USB 3.0 host, USB 2.0 device, 2x I2C, 3x UART, GPIO, PWM, SPI, and PCIe interfaces.

WB10 Block Diagram

The WB10 has an impressive audio and video interfaces with is Media I/O expressed via three 80-pin connectors that include an HDMI 2.0a supporting 4K and HDR, as well as MIPI-DSI, 2x MIPI-CSI, SPDIF Rx/Tx, 4x SAI, and the high-end DSD512 audio interface.

The following are some of the SoM specifications:

  • Processor – NXP i.MX8M Quad, Cortex-A53 x 4 + M4
  • Display  –
    • 4K + HDR
    • HDMI 2.0a
    • MPI DSI
  • RAM – 2GB LPDDR4
  • Flash Memory – 8GB eMMC Flash
  • Connectivity –
    • Wi-Fi 802.11 a/b/g/n/ac
    • MIMO 2×2 / BT 4.2
    • Ethernet 10/100M/1Gbps
  • Audio –
    • SAI
    • SPDiF Rx/Tx
    • DSD512
  • Dimension – 50 x 50 mm
  • Others –
    • USB 3.0/2.0 Host
    • USB 2.0 Device
    • i2C
    • SPI
    • UART
    • GPIO
    • CSI
    • PWM
    • PCIe
    • 80 pins x 3, board to board connectors
Carrier Board

Although no official software support has been provided, it is expected the SoM should support the usual Android and Linux BSPs as seen in most modules. A development carrier board is made available by the company to extend the SoM interfaces and will surely make development easier. The module connects to the carrier board through three 80-pin board-to-board connectors exposing many of the I/Os provided by the latest NXP processor.

At this point, no pricing or availability information is provided for the WB10. More information about the module can be found on the product page.

MCUXpresso IDE: Blinky the NXP LPC800-DIP Board

Erich Styger @ mcuoneclipse.com has a series of tutorials using the new NXP MCUXpresso IDE. He writes:

During Embedded World 2017 in Nürnberg I was lucky to get a handful LPC800-DIP boards. To get all students who were lucky to get one, here is a tutorial to make that very exciting ‘blinky’ application on that board:

MCUXpresso IDE: Blinky the NXP LPC800-DIP Board – [Link]

Cortex-M-based MCUs Set Pace For Automotive Design

AUTomotive Open System Architecture (AUTOSAR) is a worldwide automotive consortium trying to create and establish an open and standardized software architecture for automotive electronic control units (ECUs). However, as is always the case with industry consortiums and standards, they are not endorsed by all interested parties, and, to complicate matters even more, not all applications require AUTOSAR.

With this in mind NXP has launched its S32K1 family of scalable ARM Cortex-M devices together with a suite of automotive grade tools and software. Initially the family will span 128KB-2MB of flash memory. All family members include ISO CAN FD, CSEc hardware security, ASIL-B support and ultra-low-power performance. Check out the demo video.

Block Diagram

In applications where the use of AUTOSAR is not mandated, the S32K platform provides a path for self-development with a free-of-charge, pre-qualified, automotive-grade software development kit (SDK) that enables rapid prototyping with simple drag and drop functionality. For AUTOSAR applications, NXP’s MCAL and OS support has been expanded with new Complex Device Drivers (CDD) and a new S32K starter kit is available free of charge for evaluation.

You can learn more about NXP’s S32K1 product line and the suite of automotive-grade tools and software that support ARM Cortex-based MCUs at the official website.

Source: Elektor

Embedded orientation detection using the MMA8450Q

an_nxp_an3915

NXP’s accelerometer chip MMA8450Q, provides orientation detection on handheld devices:

This application note targets the portrait/landscape orientation detection feature which has become standard in many hand-held electronic devices. Additionally, this application note aims to explain uses as well as highlight some of the challenges of designing an embedded algorithm into the sensor. Included in content, the embedded settings of the MMA8450Q are explained and detailed for implementation.

Embedded orientation detection using the MMA8450Q – [Link]

AriCalculator – A homemade handheld calculator

r9awxVQrqtkZmOtWx75Ea4dh

The AriCalculator is a DIY calculator or a general purpose handheld device.

It is battery powered and runs on a NXP S12G240 microcontroller (16-bit, 240k flash, 11k RAM). The device has 38 input keys and a 128×64 pixel LCD display with a backlight option. Three interfaces connect the calculator to the outside world:

  • A BDM debug interface, giving direct access to the microcontrollers on-chip memories and debug features.
  • A USB port, offering a FTDI virtual com port (VCP). This port is under software control and intended to serve as a programming interface.
  • A general purpose SPI port, intended for hardware extensions.

AriCalculator – A homemade handheld calculator – [Link]