Tag Archives: teardown

Teardown and review of the new MHS5200A

Craig writes:

I’ve gotten a lot of questions on the blog about the new version of the MHS5200A function generators available on eBay. Viewer Tolga was kind enough to send one in to me to review and tear down. Although some improvements have been made over the older models, there are some concerning issues with these new models too!

Teardown and review of the new MHS5200A – [Link]

Teardown and analysis of microwave (26.5GHz) electro-mechanical step attenuators

Teardown and analysis of microwave (26.5GHz) electro-mechanical step attenuators from The Signal Path:

In this short episode Shahriar takes a close look at a pair of Hewlett Packard microwave electro-mechanical step attenuators operating up to 26.5GHz. Mechanical attenuators offer excellent repeatability, low insertion loss and nearly limitless linearity. The teardown reveals that the construction of both modules is very similar on the microwave path. In fact, the lower-frequency model still uses the same attenuator components. The newer model employs electronic control circuity while the older generation attenuator uses purely mechanically controlled DC path. Both models use a solenoid style actuators for step attenuation control.

Teardown and analysis of microwave (26.5GHz) electro-mechanical step attenuators – [Link]

Teardown of a Peaktech 6225A

Teardown and analysis of a Peaktech 6225A power supply from ElectroBob:

I got a Peaktech 6225A power supply to power some things, as it seemed like a good deal, going beyond what one might find normally in these types of supplies: more display resolution and supposedly, lower noise. For this price, this supply is a good deal compared to other similar ones on the market. Let’s see how it performs.

Teardown of a Peaktech 6225A – [Link]

Teardown, Repair and Experiments with a Tektronix RSA 6114A Real-Time Spectrum Analyzer

Shahriar @ The Signal Path did a teardown and repair of Tektronix RSA real-time spectrum analyzer.

In this episode Shahriar attempts a difficult repair of a Tektronix RSA real-time spectrum analyzer. This well-equipped instrument reports several error messages during startup POST including LO Unlock as well as Signal Path failures. The service manual of the instrument does not provide any detailed block diagram and no schematics. Most failures require the instrument to be serviced by the Tektronix factory. The equipment has various advanced options including 110MHz analysis bandwidth, digital modulation analysis, wide-band IF output and deep memory.

Teardown, Repair and Experiments with a Tektronix RSA 6114A Real-Time Spectrum Analyzer – [Link]

Nuclear physics applied in smoke detectors

by robertgawron.blogspot.com:

Not many people know, but in some smoke detectors, radioactive materials play an essential role. Today I will present one of those devices, and my -successful- attempt to reverse engineer it and get the circuit diagram.

Nuclear physics applied in smoke detectors – [Link]

Withings Body Cardio Teardown

02-pcbfull-7db56b9998449529b9c087ec4c30bd3859ec0976cec14741f77548da0b7d7876

Nick tipped us with his latest teardown of an advanced weighing scale. He writes:

The Withings Body Cardio is the latest in the brand’s range of smart health-centered devices, and the second Withings product we’ve tackled in this series!

It’s a smart scale with a pretty impressive set of metrics. It detects weight; fat, muscle and bone mass; hydration level; heart rate; PWV (Pulse Wave Velocity); and it shows your daily step count (if you use the app) and today’s weather.

Withings Body Cardio Teardown – [Link]

Omnipod wearable insulin pump teardown

mikeselectricstuff @ youtube.com shares his wearable insulin tear-down. This is an interesting device to tear-down so take a look.

Omnipod wearable insulin pump teardown – [Link]

Sonicare toothbrush teardown: microcontroller, H bridge, and inductive charging

sonicare-internals-composite

Ken Shirriff did a teardown of a Sonicare electric toothbrush:

The photos below show the top and bottom of the toothbrush internals. I expected to find a simple, low-cost mechanism, so I was surprised at how much complexity there was inside. The vibration mechanism (right) is built from multiple metal and plastic parts screwed together, requiring more expensive assembly than I expected. The circuit board is literally gold-plated and has a lot of components, even if it doesn’t quite reach Apple’s level of complexity. Overall, the toothbrush’s internal design is high quality (except, of course, for the fact that it quit working, as did an earlier one).

Sonicare toothbrush teardown: microcontroller, H bridge, and inductive charging – [Link]

Withings GO activity tracker teardown

19-round-up.9c22732c06c9fde55f110f1cdeb566c33b1bef67b1ff357123d9536c085943d9

nick @ novemberfive.co tears-down the Withings GO activity tracker.

First, we removed the battery. This is easy: you can simply open the back of the casing with the included tool or with a regular coin. The included battery turned out to be a Panasonic 3V CR2032 with a capacity of 225mAh. In other words, it could power a device consuming 225mA for one hour. According to the Withings GO product website, the battery can last up to 8 months, so simple math tells us that the tracker consumes only 43.4 microamps. With real life usage, that number will probably turn out a little higher, but even then it’s a very low-power device.

Withings GO activity tracker teardown – [Link]

Hacking the OWON SDS7102 Scope

scope

Christer Weinigel did a teardown of OWON SDS7102 oscilloscope. He explained how its internals are connected, ported Linux to its Samsung SoC in the scope, succeeded in getting its peripherals working, and set to work programming the Xilinx FPGA that’s responsible for signal processing.

One of the reasons I bought this specific scope was that I had seen some teardowns of it and knew that the scope has a Samsung System-on-Chip (SoC) and a Spartan 6 FPGA in it and I have some familiarity with both. At the back of my head I had the idea that I might be able to reverse engineer the scope and do something interesting with it.

Hacking the OWON SDS7102 Scope – [Link]