Technology category

Google Bristlecone, The Race To Quantum Supremacy

On Monday, March 05, 2018, research scientists from the Google Quantum Al lab whose goal is to build a quantum computer that can be used to solve real-world problems, presented their latest quantum processor called Bristlecone at the annual American Physical Society meeting in Los Angeles.

Qubits or quantum bits are merely the quantum analogue of classical binary bits. Two of the most critical challenges researchers face in their journey to achieve quantum supremacies are error rules and subsequent scalability, this is because qubits are unstable and can be unfavorably affected by noise and can only maintain one state for less for one hundred of microseconds.

Researchers from Google have calculated that a system with 49 quantum bits, a circuit depth exceeding 40 and a two-qubit error below 0.5 percent can “comfortably demonstrate” quantum supremacy. Quantum supremacy is the point where quantum computers can run certain algorithms faster than a classical computer ever could. This has been the dream of many major tech startups and companies including Microsoft, IBM, and Intel.

Bristlecone is Google’s newest quantum processor

Every Bristlecone chip has 72 qubits which might significantly reduce the error rates associated with qubits; however, Google believes quantum computing is not all about qubits. The research team further backed this belief with what they wrote in a blog post:

Operating a device such as a Bristlecone at low system error requires harmony between a full stack of technology ranging from software and control electronics to the processor itself.

The guiding design principle for Bristlecone is to preserve the underlying physics of Google’s previous 9-qubit linear array technology which demonstrated low error rates for readout single-qubit gates to 0.1 percent and most importantly two-qubit gates to 0.6 percent as its best result. This device uses the same scheme for coupling, control, and readout, but is now scaled to a square array of 72 qubits. Therefore they chose a device of moderate size to be able to demonstrate quantum supremacy in the future, first investigate and secondly order error-correction using the surface code to facilitate quantum algorithm development on actual hardware (quantum computers).

Right now, Bristlecone has crowned Google – King of Quantum Computing, a title which previously belonged to IBM because of their 50 qubits chip. However Bristlecone did not just crown Google, it also shortened the race for quantum supremacy as we know it, which Google is “cautiously optimistic” about winning. Despite Google leading the race in Quantum Computing, the ultimate goal of Quantum Supremacy is still far off and might not be surprised if companies like IBM pull something up in the near future.

IBM just unveiled the ‘world’s smallest computer’

by @

The computer is 1mm x 1mm, smaller than a grain of fancy salt, and apparently costs less than ten cents to manufacture. To be clear, the picture above is a set of 64 motherboards, each of which hold two of this tiny computer.

IBM claims the computer has the power of an x86 chip from 1990. That puts it exactly on the edge of enough power to run the original Doom (the original README.TXT for Doom says a 386 processor and 4MB of RAM is the minimum). Hopefully IBM will be more forthcoming with benchmarks in the next five years, and I’m looking forward to repurposing this chip’s LED as a one pixel display.

3D Printed Clip-On Turns Any Smartphone To A Household Microscope.

Smartphone microscope as the name implies is basically a microscope which is compatible with a user’s smartphone. They mostly made up of a soft pliable lens and uses the smartphone’s camera. Smartphone microscopes have been in existence before, they are based on the use of external LEDs and usually get powered from an external source, these attachments have been quite larger and more cumbersome than the phone itself, but a group of Australian researchers has developed a microscope attachment that doesn’t require an additional power supply or external light sources which is actually based on 3D printed material alone.

The Researchers from the ARC Center of Excellence for Nanoscale BioPhotonics (CNBP) have developed a 3D printable “clip-on” that will allow anyone to turn their smartphone into a fully functional microscope. Thinking about the weight and cost of the pre-existing smartphone microscopes, they have made a dual-mode mobile phone microscope which uses the onboard camera flash and natural light present at the scene where the microscope is to be used. If a sample is placed two focal lengths in front of the objective lens, an image is formed two focal lengths behind the tube lens.

The invention of this microscope will make sure that people unable to afford pre-existing microscopes due to the cost of the external electrical appliances to be added during assembly can now work on their research as long they have a smartphone and the 3D printable microscope. They can examine different samples ranging from plant cells to animal cells. The smartphone microscope’s design consists of a 1x magnification imaging system that is created by placing a mobile phone camera lens in front of the mobile phone’s internal phone camera module.

The difference between the 3D printable microscope and other smartphone microscopes is the illumination system of the 3D microscope since it has been designed with internal illumination tunnels. The entrance of the tunnel is placed over the camera flash. Light from the camera flash travels through the first tunnel, reflects diffusely off of the end of the tunnel and then travels back into another tunnel that is aligned to the optical axis of the objective lens and camera module.

This 3D printed based microscope has the ability to work in two different modes: the brightfield and darkfield imaging modes respectively. During the bright field mode, the microscope creates diffuse transmission illumination without the aid of an external reflective object behind the sample thereby reducing weight and cost procured upon the addition of an external electrical object. However darkfield imaging is made possible when the ambient light illuminates the sample using the sample’ glass slide. The microscope attachment is capable of viewing objects as small as 1/200th of a millimeter, making it significantly more effective than its more predecessors.

The 3D printers microscope needs only one assembly step and can be used by anyone with access to a 3D printer as the microscope clip can be printed using most makers set of 3D printers. You can get the 3D designs here if you are interested in printing out your own.

A Heat Switch for Controlling Heat Flow Path in Electronic Systems

Schematic of the thermal switch showing the (a) ON-state with the liquid metal droplet bridging the heat source and sink and (b) OFF-state with liquid metal removed from the channel. (c) Side view image of the fabricated thermal switch device. (d) The ON and OFF thermal resistance circuits based on a 1-D heat transfer model.

A switch is a fundamental part of most electrical and mechanical devices; mechanical switches can be used to select gears in a car’s transmission or used to unlock a door; electrical switches can turn the lights in a room on and off;  semiconductor uses to route logic signals within a circuit or control bigger devices. But what about heat flows? Can we possibly control the route of heat in a device? A Thermal Switch? Well, a thermal switch is an electromechanical device which opens and closes contacts to control the flow of electrical current in response to temperature change. A Thermal switch controls the flow of current concerning the temperature change, but this doesn’t actually control the flow of heat.

Heat flow is very important to engineers, and the heat movement in a device can profoundly affect the system performance and reliability especially in an electronics system. Engineers have long desired a switch to control heat flows, but many challenges exist in the creation of such a switch. Researchers from the College of Engineering at the University of Illinois at Urbana-Champaign have developed a new technology that allows users to turn heat flows “on” or “off.” This is a great development and it’s going to impact on future electronics systems.

Heat Flow from Hot to Cool Region

“Heat flows occurs whenever you have a region on higher temperature near a region of lower temperature. In order to control the heat flow, the team engineered a specific heat flow path between the hot region and cold region and then created a way to break the heat flow path when desired” claims William King, the project co-leader and a professor at the department of mechanical science and engineering.

This technology became possible based on the principle of the “motion of a liquid metal droplet,” adds Nenad Miljkovic, assistant professor in the same department who also served as a project co-leader. “The metal droplet can be positioned to connect a heat flow path, or moved away from the heat flow path to limit the heat flow.”

The team demonstrated the technology in a system modeled after modern electronic systems, giving the potential of being deployed to our everyday devices. On one side of the switch was a heat source representing the power electronics component; on the other, liquid cooling for heat removal. When the heat switch was on, the team managed to extract heat at more than 10 W/cm2, but as soon as the heat flow was turned off, they saw a drop by nearly 100X.

According to King, the next step for the research will be to integrate the switch with power electronics on a circuit board. A working prototype will be produced later this year. The research was published in a recent edition of the journal Applied Physics Letters.

Phantom v2640 - the world's fastest video camera

Phantom v2640 – The World’s Fastest High Speed Camera Captures 303,460 fps

Vision Research‘s latest addition is the new Phantom v2640 model to its array of products. This is seemingly the world’s fastest video capturing camera, able to record up to 11,750 fps in color and HD or 25,030 fps in monochrome. The maximum resolution is 2,048 x 1,952 pixels with up to 6,600 fps.

Phantom v2640 - the world's fastest video camera
Phantom v2640 – the world’s fastest video camera

At maximum resolution, it can only manage 6,600 images per second but this is enough to provide smooth x100 slow motion replay. HD (1920×1080) mode offers reduced resolution but accomplishes an impressive 11,750 fps. Things can get really breathtaking in monochrome ‘binning mode’ where up to 25,030 fps are possible. Playing the footage at the standard 24 fps gives out at more than a thousand times slow motion.

Apart from scientific applications and materials research, the capabilities of the camera would make it valuable for recording low-frequency sound events in high resolution. One obvious application could be making it a useful tool to study the movement of a bass speaker or subwoofer cone to determine membrane stability and surface resonances. Although it would not be quite fast enough to do the same job for tweeters operating at the upper limits of audibility. There is a special very high-speed mode in the camera which pushes up the frame rate up to 303,460 fps, providing images with a 1792 x 8 pixels format. This would be enough to record tweeter membrane movement but only along a very thin slice of the motion.

This camera is a technical marvel. A pixel rate of up to 26 Gpx/second suggests there are some fairly extreme high-speed electronics, resulting in a data rate reaching way in the GB/s range. As a result, the camera requires a massive internal frame-buffer to record footage of more than just a few milliseconds. Regards this, there is up to 288 GB of RAM installed which is enough to capture at least 7.8 seconds of footage. There is also a fast Ethernet interface of 10 Gb/s and other alternative data transmission connections. Battery operation is available but not necessarily too practical because the camera draws 280 Watts of power. Availability and pricing information is not available yet.

Intexar Heat powers smart clothing technology for on-body heating

Intexar™ Heat – A Revolutionary Stretchable Ink And Film Technology To Make Flexible Heated Garments

DuPont Advanced Materials (DuPont) in association with Taiwanese company Formosa Taffeta, has developed a powered smart clothing technology named Intexar™ Heat, for on-body flexible heating garments.

The new fabric is thin, lightweight, and durable. The Intexar™ Heat is an ideal solution for outdoor clothing and it is designed to be easily integrated into garments. This innovative technology consists of a thin layer of carbon resistors, interconnected by an underlying layer of silver electrodes printed on a stretchable thermoplastic polyurethane (TPU) laminate. The silver electrodes supply currents throughout the resistor grid to radiate a right amount of heat within garments. By default, the active layer is sandwiched between a plain or customized outer protective layer. This protective layer shields the heating element from exposure and the fabric making up the garment.

Intexar Heat powers smart clothing technology for on-body heating
Intexar Heat powers smart clothing technology for on-body heating

Michael Burrows, the global business manager at DuPont Advanced Materials, described Intexar™ Heat as a revolutionary stretchable ink and film that when powered, creates a comfortable warmth. Formosa Taffeta Company will be the first textile manufacturer to apply Intexar™ Heat technology as part of its Permawarm® line. The new Permawarm® lineup will provide clothing with a complete garment heater system including the Intexar™ heater layer, connectors, and control software.

James Lee, president of FTC, said,

With Permawarm™, clothing brands can focus on garment design and brand engagement. We are taking the guesswork out of bringing their customers safe and comfortable heated garments.

Intexar™ materials can also be very useful in biometric monitoring in smart clothing. Pulse rate, respiratory rate, muscle activity and form awareness are all measurable using sensors and conductive pathways built from Intexar™ which makes it a complete smart garment solution.

To cope with the coming era of functional thermal insulation this is a huge step forward for heat-insulation fabrics. It is a new high-tech lightweight material ideal for thermal insulation in the winter.

PowerSpot Far Field Wireless Charger Will Charge Devices Up to 80 Feet Away

Over the last few years, there has been an unprecedented growth in the consumer electronics industry. The smartphones, fitness trackers, Smart homes devices, wearables, earbuds, VR/AR, and much more have fostered this growth.

The Smartphone proliferation has been a key factor in the global consumer electronics market size, smartphones have become way better, faster and even cheaper. The Internet of Things (IoT) has promised us more incoming and it’s estimated that we will have up to 21 billion connected devices by 2020. Technological advancements like the emergence of 4G and 5G technologies are expected to drive this demand. Despite all these advances in technology, one function remains chained to the wall – Power.

The laptops, tablet, phones, smart hubs, fitness trackers and others still require being powered. Even, though they are mostly battery powered and could last for a couple of days (without much activity), they all still need to be tied to a plug socket for hours to be recharged. Power has been a major source of concern and people have been dreaming about the potential of wireless charging their devices.

Powercast PowerSpot Transmitter

Wireless charging has been an interesting topic in the past few years with major advancement made in wireless charging smartphones up to a few centimeters using charging platforms. Like Energeous Wattup that charges up to 3 feet away, Powercast has introduced PowerSpot – a system that will allow devices to be wirelessly charged at up to 80 feet away.

Powercast a leading provider of RF-based wireless power technologies, has unveiled the PowerSpot. Similar to Wi-Fi, devices charges in the range of the PowerSport 3W transmitter, and will automatically turn off when full. PowerSpot charging technology needs no charging platform or direct line of sight as we have seen in Qi charging platforms and has already received approval from both the U.S.-based FCC and Canada-based ISED.

Powercast’s transmitter uses the 915 MHz ISM band to send power to a Powercast receiver chip called “The PowerHarvester” in a device, which converts the transmission to DC to “directly power or recharge” an enabled device at up to 80 feet for devices with low power need. The PowerSpot transmitter uses Direct Sequence Spread Spectrum (DSSS) modulation for power and Amplitude Shift Keying (ASK) modulation for data and includes an integrated 6dBi directional antenna with a 70-degree beam pattern.

PowerSpot charging zone

Game controllers, smartwatches, fitness bands, or headphones will charge best up to two feet away; with keyboards and mice up to six feet away. TV remotes and smart cards charge well up to 10 feet away; with low-power devices like home automation sensors getting sufficient charging power up to 80 feet away.

Powercast is expecting a $100 retail on the transmitter with a projected $50 average price when it reaches mass production. It will be available in the 3rd quarter of 2018 or early 2019.

A new type of transistor (a) harnesses a property called negative capacitance.

Researchers Demonstrate New More Efficient FET By Implementing Negative Capacitance

A group of Researchers from Purdue University in Lafayette, Indiana demonstrated the effect called negative capacitance by making a new type of more energy efficient transistor. This new kind of Field Effect Transistor (FET) proves a theory introduced in 2008 by Supriyo Datta, the Thomas Duncan Distinguished Professor of Electrical and Computer Engineering, and Sayeef Salahuddin, who is a professor of Electrical Engineering and Computer Sciences at the University of California, Berkeley.

A new type of transistor (a) harnesses a property called negative capacitance.
A new type of field effect transistor harnesses a property called negative capacitance.

The researchers from Purdue University made a much thinner layer using the semiconductor Molybdenum disulfide. It creates a channel adjacent to an important part of transistors called the gate. By using a “ferroelectric material” called hafnium zirconium oxide, they created a negative capacitor which is a key component in the newly designed gate.

Capacitance is the property of any dielectric or conductor to store electrical charge. It is ordinarily a positive quantity. With the help of ferroelectric materials, the new FET gate structure allows a negative capacitance. Due to this the energy needed to switch the FET is considerably reduced. This new design just substitutes hafnium oxide with hafnium zirconium oxide. Hafnium oxide is a conventional material to use in modern FETs as a dielectric material to isolate the gate. This work is led by Peide Ye, Richard J. and Mary Jo Schwartz of Purdue University.  Ye said,

The overarching goal is to make more efficient transistors that consume less power, especially for power-constrained applications such as mobile phones, distributed sensors, and emerging components for the internet of things

Transistors act like a tiny electronic switch. They can turn on and off very fast, allowing computers to process information in binary code. A proper switching off state is very important to ensure that no electricity “leaks” through. This switching normally needs a minimum of 60 millivolts for every tenfold increase in current. This requirement called the thermionic limit. However, transistors using negative capacitance can break this fundamental limit, because they can switch at far lower voltages resulting in smaller power consumption.

New findings from the research group have advanced the conventional transistor technology to a much efficient and faster level. Only time will justify if the new ‘negative capacitance‘ FETs can revolutionize the modern electronics.

Flexible Graphene sensor by Chalmers University

Researchers Develop Transparent Flexible Terahertz Sensors With Graphene

The researchers of the Swedish Chalmers University of Technology have developed a new design of terahertz sensor using Graphene. This flexible sensor can be integrated into wearable materials. Most importantly, it can be manufactured very cheaply and also it is practically transparent. This new type of sensor could be a major breakthrough by opening doors of many new applications.

Flexible Graphene sensor by Chalmers University
Flexible Graphene sensor by Chalmers University

The terahertz frequency band ranges from 100 to 10,000 GHz. Terahertz radiation is able to penetrate materials that block visible and mid-infrared light. This technology opened up a range of potential applications in medical diagnostics, process control, and even intelligent vehicles. Jan Stake, the head of the Terahertz and Millimetre Wave Laboratory at Chalmers, said,

Terahertz graphene-based FET detectors have been demonstrated on rigid substrates such as SiO2/Silicon, and flexible devices such as graphene and other concepts have been demonstrated at RF/microwave frequencies.

This band is also used by the so-called “nude-scanners” used at airport check-in desks to look for illegal items carried by passengers. THz waves penetrate normal clothing hence it can detect weapons made of plastic. As Non-metallic weapons cannot be detected by ordinary metal detectors used at the entry gates and by hand-held scanners. Thus these new inexpensive sensors can enhance security for everyone.

Terahertz transmissions have enormous bandwidth available. THz signals can be used as carriers for high-speed information links over short distances allowing data speeds up to 100 Gb/s. On the other hand, THz waves allow uninterrupted visibility in fog or rain for motorized vehicles.

There are many medical applications of the technology using sensors that are cheap to produce and are physically small. One important example is in the field of dermatology. Skin regions affected by cancer have a different reflective index to THz waves which makes the sensor a useful diagnostic tool.

Although being under development for a long time, conventional THz sensors were always large and expensive. With this new design, the Swedish research team has enabled the tech world with mass production of the sensors. New sensors will be small, flexible and cost-effective. Development of the sensors was funded by the European Union under the Graphene Flagship Initiative.

What the Chalmers team has done to combine flexibility and terahertz detection could also make it possible to build an Internet of Things connected via high-bandwidth 5G technologies.

Micro-spectrometer Sensor Will Let You Check Air Quality Or Blood Sugar – Using Smartphone

Now you can use your smartphone to check how clean the air is, measure the freshness of food or even the level of your blood sugar. This has never been so easy. All credit goes to the new spectrometer sensor which is developed at the Eindhoven University of Technology and can be easily attached to a mobile phone. The little sensor is just as precise as the normal tabletop models used in scientific labs. The researchers published their invention on 20th December in the popular journal Nature Communications.

The blue perforated slab is the upper membrane, with the photonic crystal cavity in the middle
Spectrometer sensor construction: The blue perforated slab is the upper membrane, with the photonic crystal cavity in the middle

Spectrometry is the analysis of the light spectrum. It has an enormous range of applications. Every organic and inorganic substance has its own unique ‘footprint‘ in terms of light absorption and reflection. Thus it can be recognized by spectrometry. But precise spectrometers are bulky and costly since they split up the light into different colors (frequencies), which are then measured separately.

The intelligent sensor developed by Eindhoven researchers is able to make such accurate measurements in an entirely different way. It uses a special photonic crystal cavity that acts as a ‘trap’ of just a few micrometers into which the light falls and cannot escape. This trap is situated in a membrane. In the membrane, the captured light generates a tiny electrical current which can be measured accurately. The accurate working cavity design is made by Žarko Zobenica, a doctoral candidate.

The sensor can measure only a narrow range of light frequencies. To increase the frequency range, the researchers placed two of these membranes above each other closely. The two membranes affect each other. Changing the separation gap between them by a tiny amount also changes the light frequency that the sensor recognizes. To understand this the researchers, supervised by professor Andrea Fiore and associate professor Rob van der Heijden, included a MEMS or micro-electromechanical system.

This mechanism can change the measured frequency by changing the separation between the membranes. In this way, the sensor is able to cover a range of about thirty nanometers. Within which the spectrometer can recognize some hundred thousand frequencies with an exceptional precision. The research team demonstrated several applications like an extremely precise motion sensor and a gas sensor. All made possible by the clever use of the tiny membranes.

As per Professor Fiore‘s expectations, it will take another five years or more before the new spectrometer actually gets into a Smartphone. The main difficulty at this moment is the frequency range covered is still too small. It covers only a few percent of the most common spectrum, the near-infrared.

Given the huge potential and the wide field of applications, micro-spectrometers can become just as important as the camera in the smartphones of future.