Technology category

OpenMV H7 Machine Vision Camera board – Designed for Low Power Real Time Applications.

A new open source micro python powered machine vision camera called the openMV H7, is the new tool for developers and hobbyists looking to create machine vision projects. The new machine vision camera has been specifically designed for low power real time applications. The board is built around a 32-bit ST Microelectronics STM32H743 VI ARM Cortex-M7 processor, with 1Mb of RAM and 2MB of flash, running at 400 MHZ. The old M7 camera board could not run the machines learning algorithms, but the new H7 board which is a successor to the older M7 camera board can run the algorithms with ease.

The new board comes with an Omivision OV7725 image sensor, which can take 640×480 8- bit gray scale image or 640×480 16-bit RGB565 images at 60 FPS when the resolution is above 320×240 and 120FPS when it is below. The image sensor is removable and comes with a 2.8 mm lens on a standard M12 lens mount. This allows for both lens and vision sensor itself to be swapped out and replaced.

OpenMV is providing two alternative image sensors, the Global Shutter Camera Module intended for “professional machine vision applications” and a FLIR Lepton Adapter Module for “thermal machine vision applications.” The global shutter camera module is based on the ON semiconductor MT9V034, a grayscale sensor capable of running at 80FPS in QVGA mode, 200 FPS in QQVGA mode, and up to 400 FPS in QQQVGA mode.

OpenMV is also working to support both the Panasonic AMG8833 Grid-Eye Thermal sensor and Melexis MLX90640 Thermal sensors with the same adapter module, which should give users access to thermal imaging support at a much lower price point, and without the restrictions of US exports control.

The new machine vision camera is available on kickstarter, with price ranging from $49 for a camera board, with the default pre-focused OV7725 camera module mounted, through to $99 for a board with a mounted OV7725 Module and an additional the MT9Vo34 camera Module included, all the way up to $329 for a board with a FLIR Lepton 3.5 camera Module included.

If all goes well, and the kickstarter campaign raises the required $50000 needed to make the jump from concept into production, the openMV H7 cam will start shipping by March 2019.

The OpenMV project is about creating low-cost, extensible, Python powered, machine vision modules and aims at becoming the – Arduino of Machine Vision.

The goal is to bring machine vision algorithms closer to makers and hobbyists. The difficult and time-consuming algorithm programming is done for you leaving more time for your creativity.

Microsoft Develops Blood Pressure Monitoring Glasses

Medical conditions, specifically hypertension and heart problems require at-home blood pressure monitoring devices, and if you have frequent high blood pressure, you may need to monitor your blood pressure constantly. The use of devices like blood pressure inflatable cuffs can be inconvenient and strenuous, but this could change. With the new Microsoft Glabella project glasses you can continuously monitor your blood pressure, without the need for inflatable cuffs and blood pressure monitoring will become less cumbersome for the user.

The Glabella project glasses looks like a conventional eyeglass, though designed with a thick frame. The thick frame houses some components like the processor and a 3-axis IMU (inertial measurement unit). Those components are used in conjunction with the optical and pulse sensors to indirectly check the users blood pressure. Prototype of this glasses have been tested, with the optical sensor located on the bridge of the nose and the pulse sensor located on the side of the head. They continually measure pulse waves at three different locations on the users face, and then calculate blood pressure. The glasses also collect data on physical activity, so can function as a 24/7 activity tracker. It is worthy to note that the sensors have only been shown to be accurate for taking systolic pressure when the heart is pushing the blood around the body.

Microsoft smart glass with blood pressure monitoring

While it is generally considered to be more important than diastolic pressure, both readings have their use. Systolic pressure is better for determining your risk of having a stroke or heart attack. A high diastolic pressure, on the other hand is bad for the heart because it shows the heart is not relaxing enough, which can lead to other cardiovascular problems. The results of the tests are compelling because during testing, the subjects wearing the glasses achieved the goal of frequent blood pressure checks. Since the glasses don’t require the use of the cumbersome inflatable cuff, the subjects were much more likely to use the glasses consistently.

Even though there was a positive result from the testing which is promising, there is an issue which concerns the performance of the glasses. The issue is the need of the glasses for calibration, but don’t worry, Microsoft is working on a new version that improves this. They are also working on making the glasses slimmer and more efficient, and the plan on carrying out a clinical evaluation is coming soon. Whether we will see a commercial version of this product is not entirely clear. There have been cases of manufacturers who go ahead to patent a technology, and that technology never progress past the planning stage, or are ever released, and this makes it hard for others to develop the technology. Let’s keep our fingers crossed.

Imec Invented Unique Cost-effective Cooling For High-Performance Chips

Imec, the distinguished Belgian research center has invented a new and cost-effective method of cooling chips. This achievement can be an important innovation to tackle the ever-increasing cooling demands of high-performance 3D chips and systems.

Present powerful electronic systems have high cooling demands for integrated semiconductor chips. Conventional solutions operate with various passive (or occasionally active) heat sinks. The main bottleneck in the heat-transfer path occurs at the interface between the semiconductor and the heat sink. It is proven that direct cooling on the back of the chip is more efficient, but current microchannel solutions do more harm than good. It leads to stress and a temperature gradient across the chip surface. Thus a new way of cooling in that method was much needed.

Imec's cost-effective cooling solution for high performance chips
Imec’s cost-effective cooling solution for high-performance chips

The ideal solution is to use an impingement-based cooler with coolant outlets distributed across the chip’s surface area. This system directs the liquid perpendicular to the chip surface and ensures the liquid is at the same temperature throughout. It also reduces contact time between the coolant and the chip. Until now, cooling solutions based on this principle have the disadvantage of being very expensive. In some other alternative implementations, the nozzle diameter and necessary fabrication techniques are not compatible with chip packaging processes.

Imec has developed a new impingement chip cooler that uses polymers instead of silicon, to achieve a cost-effective fabrication. Moreover, imec’s solution features nozzles of only 300µm diameter, made by high-resolution stereolithography 3D printing. The use of 3D printing allows customization of the nozzle pattern design to match the heat map and the fabrication of complex internal structures. Moreover, 3D printing allows to efficiently printing the whole structure in one part, reducing production cost and time.

Schematic of multi-jet cooler
Schematic of multi-jet cooler

Our new impingement chip cooler is actually a 3D printed ‘showerhead’ that sprays the cooling liquid directly onto the bare chip,” explains Herman Oprins, senior engineer at imec. “3D prototyping has improved in resolution, making it available for realizing microfluidic systems such as our chip cooler. 3D printing enables an application-specific design, instead of using a standard design.

Imec’s impingement cooler achieves a high cooling efficiency, with a chip temperature increase of less than 15°C per 100W/cm2 for a coolant flow rate of 1 l/min. Moreover, it features a pressure drop as low as 0.3 bar, because of the smart internal cooler design. It outperforms benchmark conventional cooling solutions in which the thermal interface materials alone already cause a 20-50°C temperature increase. It is a highly efficient and cost-effective fabrication. Imec’s cooling solution is much smaller compared to existing solutions, matching the footprint of the chip package enabling chip package reduction and more efficient cooling.

UDOO BOLT, A Supercomputer with twice the Power of a MacBook Pro 13

One thing technology has taught us in the last few years, is the so-called powerful devices of yesterday, will not match the devices of today or tomorrow and this is something that is transcending in the hardware industry. Maker’s board have seen a drastic improvement ever since the first Arduino and the Rasberry Pi Single Board Computer were launched. Startups, makers, engineers and even the big corporations like Intel and Nvidia have all joined in improving the maker’s ecosystem with the launch of their own boards.

UDOO Bolt

Improvements will always keep coming and one board that is going to redefine the maker’s ecosystem is the newly crowdfunded UDOO Bolt. We have seen boards like the Pi 3, Asus TinkerBoard, Nvidia Jetson and other high-performance boards, but the UDOO Bolt brings a new authority to this space. A maker board that carries an exceptional punch – A supercomputer in a maker footprint.

UDOO, an Indie developer company has released a new maker board after the UDOO x86 Ultra, and the new board reached its funding target on Kickstarter within fours hours after launch. This does not come as a shock considering the specifications of the board. The 12cm by the 12cm board which is called UDDO BOLT is almost twice as powerful as the board used on a MacBook 13 pro. The UDOO BOLT is a quantum leap compared to current maker boards: a portable, breakthrough supercomputer that goes up to 3.6 GHz thanks to the brand-new AMD Ryzen™ Embedded V1000 SoC, a top-notch, multicore CPU with a mobile GPU on par with GTX 950M and an integrated Arduino™-compatible platform, all wrapped into one.

The first and most amazing feature considering the size of the board is the type of SoC (System on Chip) that comes with the board. The tiny maker PC comes with an AMD Ryzen Embedded V1000B SoC which has an integrated ‘Radeon Vega’ graphics processing unit on the chip. The GPU is super impressive for it supports triple A (AAA) video game experience, High dynamic range (HDR) that helps the camera to capture greater detail from both bright and dark areas of a photo, Radeon FreeSync 2 and you can stream videos at 4K resolution with a running rate at 60 frames per seconds (fps) on four screens simultaneously.

This brings us to the next feature; one can view videos on four screens due to the presence of two HDMI 2.0 ports and two USB C ports. Other ports include two USB 3.1 Type-A, a single audio jack, a Gigabyte Ethernet Jack, a 19V DC power input and the Arduino compatible pinout.

You must be wondering why there is an Arduino port, this is only because the board has the same pin functionality of Arduino Uno and is even better since it has up to 12 analog inputs instead of 6, 7 PWM pins and the internal USB connection can implement other functions than serial UART like MIDI or Keyboard. Building IOT tools just got easier for all robotic engineers with its Arduino-compatible platform, which has a complete IOs for the CPU and Arduino onboard. The best part is that one can work with sensors using the Arduino platform without soldering because the board comes with grove connectors.

The UDOO BOLT supports two different types of operating systems; it supports Linux and Windows which means a person can run any application or software using the board. Also, the board can be classified into two different types based on the GPU, one comes with an AMD Radeon Vega 3, and the other has AMD Radeon Vega 8. The starting price is $229, and shipping begins in December.

The UDOO Bolt should comfortably outswing the likes of the Nvidia Jetson TX2 in areas of computer vision and deep learning and the fact it supports Windows will also give it more leverage but this won’t be an easy fight though. A worthy comparison will be between the UDOO Bolt and the new NVIDIA Jetson Xavier.

If there is any board you want to buy now, then the UDOO bolt is a board you should go for.

96-layer BiCS FLASH prototype from Toshiba uses QLC technology

Toshiba Memory Europe has developed a prototype sample of a 96-layer BiCS FLASH, memory device using its proprietary 3D flash quad level cell (QLC) technology, claimed to boost single-chip memory capacity to the highest level yet achieved.

QLC technology increases the bit count for data per memory cell from three to four, “significantly expanding capacity” says Toshiba. The memory devices achieves the industry’s maximum capacity of 1.33Tbits for a single chip. It was jointly developed by Toshiba Memory Europe with Western Digital.

The memory also realises 2.66Tbytes in a single package by using a 16-chip stacked architecture. This is claimed to be an unparalleled capacity in a memory device, and is designed for the anticipated volumes of data generated by mobile terminals, as well as the spread of SNS, the progress in the IoT and the demand for analysing and using that data in real time. All of which are expected to increase dramatically. Data volumes will also require even faster HDDs and larger capacity storage and such QLC-based products, using the 96-layer process, will contribute to the solution, believes Toshiba Memory Europe.

Toshiba Memory will start to deliver samples to SSD and SSD controller manufacturers for evaluation from the beginning of September and expects to start mass production in 2019.

A packaged prototype of the new device will be exhibited at the 2018 Flash Memory Summit in Santa Clara, California, USA from August 6th to 9th.

Toshiba Memory Europe is the European business of Toshiba Memory, and offers a broad product line of flash memory products, including SD cards, USB flash drives, and embedded memory components, in addition to solid state drives (SSDs). Company offices are in Germany, France, Spain, Sweden and the United Kingdom.

http://www.toshiba-memory.com

Michigan Micro Mote – The World’s Smallest Computer

The battle of the world smallest computer is something the researchers at the University of Michigan don’t attempt to give up anytime soon with the introduction of the Michigan Micro Mote, a computer smaller than a grain of rice.

The Michigan Micro Mote has helped researchers at the University of Michigan remain top in the competition of the creation of the world’s smallest computer. IBM took the title in March 2018 with the release of their 1mm x 1mm computer that measured smaller than a grain of fancy salt at its Think 2018 conference; however, the Michigan Micro Mote has put the University of Michigan back at the top.

One major talk about the new computer built and even the previous one by IBM is if the so-called computer can be called a Computer. Reason being, it is hard to decide if the micro mote is a computer or not since they don’t satisfy some computer requirements like the ability to keep data when power runs out.

According to David Blaauw, a professor of Electrical and Computer Engineering at the University of Michigan,

We are not sure if they should be called computers or not. It’s more of a matter of opinion whether they have the minimum functionality required.

Be low are the features and capabilities of the Micro Mote:

  • It cannot retain programming and data once there is a power loss
  • This super tiny computer uses photovoltaics: a way of converting light to electricity to enable an exchange of data.
  • It has a base station which provides light for power and programming. It also receives data. Light from the base station and the transmission LED (Light Emitting Diode) creates currents in the tiny circuits.
  • There are wireless transmitters for transmitting data with visible light.
  • Presence of precision sensor to convert temperature into time intervals that come with electronic pulses.
  • The Michigan Micro Mote has a LED, system memory and a processor.
  • Dimensions of the computer are 0.3 by 0.3 by 0.3mm. It is shorter than a grain of rice.
  • Can measure temperature in super tiny regions such as a cluster of cells, with an accuracy of 0.1 degree Celsius.

Despite the very tiny size, the Micro mote might find applications in the following areas:

  • It can be used for advanced cancer studies.
  • Useful during pressure sensing inside the eye for glaucoma diagnosis.
  • Can be used for oil reservoir monitoring.
  • Biochemical process monitoring.
  • It comes in handy when studying tiny snails.
  • Can be used for Audio and visual surveillance.

David Blaauw, Dennis Sylvester created the Michigan Micro Mote; both are professors of Electronics and Communication Engineering (ECE) at the University, and Jamie Phillips, an Arthur F. Thurnau professors of ECE. A study on the microcomputer was presented at the 2018 Symposia on VLSI Technology and Circuits on June 21.

Nvidia’s Jetson Xavier is an AI Computer boasting a $10,000 Worth Of Power For Your Machines and Robots

NVIDIA Jetson Xavier is the latest addition to the Jetson platform. It’s an AI computer for autonomous machines, delivering the performance of a GPU workstation in an embedded module for a consumption under 30W. With multiple operating modes at 10W, 15W, and 30W, Jetson Xavier has greater than 10x the energy efficiency and more than 20x the performance of its predecessor, the Jetson TX2.

Nvidia Jetson Xavier Computer On Module
Nvidia Jetson Xavier CoM

Jetson is a product of Nvidia (Nvidia Jetson) and one of the most powerful embedded platforms for computer vision applications and AI on edge. The Jetson platform is a range of computation processor boards which consists of the Jetson TK1, TX1, and TX2. They’re powered by a Nvidia Tegra which utilizes the ARM Central Processing Unit (CPU). Various operating systems can run on them, such as Linux distros and QNX which is a commercial Real-Time Operating System (RTOS) designed primarily for embedded systems. Nvidia is adding now a new more powerful member to the Jetson Platform.

Nvidia is very excited to announce the release of Jetson Xavier, an Artificial Intelligence computer that works with autonomous machines giving off a GPU workstation in an embedded module and now available in a Jetson Xavier Developer Kit $1299 (USD). It has a super high performance of close to 30 trillion operations per second (TOPS).

The Nvidia Jetson Xavier Developer Kit
Jetson Xavier Developer Kit

Jetson Xavier is designed for robots, drones and other autonomous machines that need maximum compute at the edge to run modern AI workloads and solve problems in manufacturing, logistics, retail, service, agriculture and more. Jetson Xavier is also suitable for smart city applications and portable medical devices. Launched at Computex 2018 in Taiwan by Nvidia CEO Jensen Huang, the Nvidia Isaac Platform includes new hardware, software, and a virtual-world robot simulator that makes it easy for developers to create new kinds of robots.

Jensen Huang said at Nvidia’s Monday press conference at Computex in Taiwan,

This is the single longest processor project we have ever done in our company, Xavier has roughly the same processing power as a $10,000 workstation equipped with a graphics processing units. Plus, it’s easy on the power consumption, he added.

Jetson Xavier is capable of more than 30 TOPS (trillion operations per second) for deep learning and computer vision tasks. The 512-core Volta GPU with support for Tensor Cores and mixed-precision compute is capable of up to 10 TFLOPS FP16 and 20 TOPS INT8. Jetson Xavier’s dual NVDLA engines are capable of up to 5 TOPS each. It also has high-performance eight-core ARM64 CPU, a dedicated image processor, a video processor and a vision processor for accelerating computer vision tasks.

It also announced an “Isaac” software development platform for robots and other autonomous machines that run on its Linux-friendly octa-core “Jetson Xavier” module. The NVIDIA Isaac Software Development Kit (SDK) gives you a comprehensive set of frameworks, tools, APIs, and libraries to accelerate development of robotics algorithms and software.

The Isaac robotics software consists of:

  • Isaac SDK — a collection of APIs and tools to develop robotics algorithm software and runtime framework with fully accelerated libraries
  • Isaac IMX — Isaac Intelligent Machine Acceleration applications, a collection of NVIDIA-developed robotics algorithm software
  • Isaac Sim — a highly realistic virtual simulation environment for developers to train autonomous machines and perform hardware-in-the-loop testing with Jetson Xavier

The Jetson Xavier Developer Kit will be available for early access in August and open to the public in October. Developers using a Jetson TX2 or TX1 to develop autonomous machines using the JetPack SDK can sign up to be notified when they can apply for early access by completing a survey. More information may be found in the Xavier product page.

Surrounding Gate Transistors – Price + Size + Performance

Intel co-founder Gordon Moore predicted in 1965 that the number of transistors per silicon chip would double every two years. This came to be known as Moore´s Law which has been proven accurate for the last fifty years. Many scientists argue that the law is soon to be broken because of physical limitations. The end of Moore´s law would mean a stagnation in computer processing and power and could cause economic issues because changing the whole computer industry to adapt to a new technology would generate really high costs.

Unisantis electronics in association with the Belgian research institute Imec have proposed a solution that not only allows the size to get smaller, but also will have minimum effect in manufacturing process. The Surrounding Gate Transistor (SGT) has a vertical design (as opposed to commonly used transistors which have a horizontal design), this means 50% less occupied area while electron mobility could increase by 300%. Additionally, the vertical structure improves operating voltage, stability, and leakage current.

Nowadays, transistors used are about 10 nm, but smaller sizes come with problems such as quantum tunneling which allows the electrons to flow from one gate to the next. SGT´s surround the channel on all sides and that provides better control over the channel. The surrounding gate topology enables a single SRAM cell using just six 5 nm transistors.

Also, Unisantis has developed the process for STG production using the technology available nowadays. As a result, the implementation of this technology in the sector will not mean a huge impact on costs.

Other solutions have been proposed such as software improvements, and parallelization, but these are not long-term solutions since a physical barrier is soon to be reached. Other solutions are too expensive to implement, or the idea is still in early steps. Many industries are working toward solving this problem, but few viable solutions have been reached.

Technology industry demands constant improvement in processing and power efficiency, and Unisantis electronics solutions offers price and performance, this could make this technology the next “standard” for computer products and will allow Moore´s law to stay valid for some more time. Its important to clarify that if Moore´s Law stops being valid, we won´t be the first to feel the impact since latest transistor technology is mainly used in super computers, it will take a couple of years for us to feel the slowing in the improvement rate of everyday devices.

Mi Mini PC – The World’s Most Powerful Pocket-Sized PC

Change is constant and accepted by most people if not all. The Evolution of the digital computer has been continuous, technological advancement brought minicomputers, microcomputers, and even notepads. It also brought the invention of smartphones and tablets, but all these gadgets which have been in existence have different issues such as size, weight, ability to carry out specific functions well and many more. However, recently a Hong Kong-based researcher who goes by the name Leo Chung released to the public information about his project called the Mi Mini PC.

The Mi Mini PC

With the goal to put away tablets, personal computers, and laptops, the mini PC is simply a small version of the combination of a tablet and laptop. Don’t be fooled by the size; the Mi Mini PC will stand toe to toe with some modern laptops today. It has 128GB Solid State Drive (SSD) which can be upgraded to 512GB SSD for $50, and it comes with 8GB Random Access Memory (RAM) (most mid range laptops have 4GB).

Additionally the Mini PC has various ports found on a generic modern laptop such as the HDMI port which enables it to connect to a bigger screen, USB Type C port (yes, the same found on the new gadgets and the costly MacBook), and other USB ports. Talking of screens, the Mini PC is a touch screen gadget and has HD resolution of 1280*720 pixels. This versatile device comes with an impressive feature set, and it also includes USB 2.0, USB 3.0 and Ethernet. Bluetooth 4.2 connectivity, dual-band WiFi, stereo speakers are also built in.

The board runs on the powerful Intel Atom 2.56 GHz processor. Capable of fitting in the palm of your hand, Mi MiniPC is paired with a wireless, foldable Bluetooth keyboard and features a 6,000-mAh battery with a six-hour power life for office presentations and long work days.

Some features of the Mini Pc include:

  • 5-inch Aluminium Case for the body.
  • Game Console specially designed for the mini PC which costs $20.
  • SD card slot.
  • 2.56Ghz Intel Atom x7- Z8750 Processor.
  • A power adapter.
  • Carrying pockets for keyboard and adapter

A lot of people might be worried about how a device so small can work efficiently. The mini PC has not only a pre-installed Android 5.10 Operating System (OS) but also a functional Windows 10 OS which means one can work on any windows program without difficulty. Its 8GB RAM and Solid State Drive ensures the device can manage and run several programs and applications simultaneously, and still capable of running some computer games as well. Another fantastic perk to the mini PC is that it allows you to choose your preferred operating system on startup.

The most significant advantage of the PC is that it is very portable and the fact that one can get all that is required for a laptop on a 5-inch sized device. The Mini PC also ends the story of overheating and whirring noises made by existent laptops. Due to its’ aluminium case and high – tech heat sinks, fans are now a thing of the past, therefore, making a solution for annoying whirring sounds.

The Mi Mini PC project is currently being crowdfunded over on Indiegogo which has raised over $1 million in backing already. Pre-orders are available with prices starting at $159 (US) and an expected ship date of September 2018. The standard package includes two carrying pockets, a cover stand, a foldable Bluetooth keyboard, and power adapter. Add-ons include an extra battery ($10), Android 7.1 Upgrade ($15), gaming controller ($20), 256GB SSD upgrade ($30), or 512GB SSD upgrade ($50)

Solid State Li-ion Batteries – High Energy-Dense Batteries Are Closer Than Before

The Interuniversity MicroElectronicss Centre (IMEC) is an independent research center which deals with nanoelectronics and digital technologies. Their headquarters are situated in Leuven, Belgium. Recently IMEC began to research and prototype Solid State Lithium-ion batteries. Solid State batteries are batteries which make use of solid electrodes and electrolytes. There have been a lot of research about Solid – State batteries, however, IMEC has moved from research to producing its first prototype.

Prototype Battery

The battery produced has an energy density of two hundred Wh/L, can be charged within two hours and can accept a charge of 0.5 C. This was achieved through the use of Solid State electrolyte. Nanocomposite electrolyte with high conductivity features was used. The electrolyte starts out as a fluid before solidifying. Unlike liquid electrolyte-based batteries, batteries based on Solid State electrolytes have “inherent safe operating characteristics.” Here’s a scenario: Throwing a normal battery against the wall might cause it to burn due to the liquid electrolyte which is flammable, however Solid State Lithium-ion batteries don’t have anything to burn because lithium is not flammable in its solid state.

ADVANTAGES OF SOLID STATE ELECTROLYTES OVER FLUID ELECTROLYTES

A Solid State electrolyte has almost no degradation reaction left. Therefore it can last through ” hundreds of thousands of cycles.” Secondly, solid-state electrolytes are compatible with metal like lithium anodes thereby affording it the opportunity to obtain very high energy densities targets. This means that higher energy densities can be derived from Solid State electrolytes. Furthermore, fluid electrolytes based Lithium-ion batteries cannot perform well in extreme cold. Solid State electrolytes are capable of working under really low temperatures.

Another advantage is that the dense ceramic electrolyte prevents Li-dendrite shorting and overcomes thermal stability issues of currently used organic liquid electrolytes. The all-solid-state structure provides revolutionary dimensional tolerance and mechanical strength, decreasing packaging requirements and system weight.

Some of the potential applications of this will be :

  • portable electronics (such as laptops or cameras).
  • electric cars.
  • home storage systems for the smart grid.
  • future smart household appliances and autonomous robots.
MORE INFORMATION

IMEC hopes to achieve the development of a battery with an energy density of 1000Wh/L and charging time of 30 minutes (2C). The quest for solid-state batteries isn’t stopping with IMEC alone – MIT is in partnership with Samsung, and they have formed a team to work on Solid State batteries and electrolytes. The University of Maryland is also currently working on their own Solid State Lithium-ion battery. With the way things are going, it will not be long before liquid Lithium chemistry is completely replaced by Solid State electrolytes.