Tag Archives: Battery

LiFeP04wered/Pi+, A High-Performance Battery Power System For Raspberry Pi

LiFePo4wered/Pi+ is simply a better version of the LiFePo4wered/Pi3 and the LiFePowered/Pi. These devices are all designed to solve the issue of power supply to the raspberry pi. LiFePo4wered is simply a high-performance battery power system which is acting as an option for raspberry pi projects where the likes cellphone adapters and USB power banks cannot fit in.

Power is one of the significant factors in the use of the Raspberry, most Raspberry Pi projects are usually plugged into a wall power adapter which at some could impact on the mobility and portability of the project, but with the LiFePo4wered/Pi+ you don’t have to worry about plugging your project into a wall socket. It can power a Raspberry Pi for up to nine hours from its battery (depending on installed battery size, Raspberry Pi model, attached peripherals, and system load) and can be left plugged in continuously.

LiFePo4wered/Pi+ might probably end up as the best source of power supply to the raspberry pi, and the primary advantage is that it works with all models of the Raspberry Pi. The LiFePo4wered/Pi+ can provide a steady continuous current supply of 2A to the Raspberry Project; this is usually like the max most Raspberry Pi project will use an unlikelihood one will be capped at that max but the general standard of about 700mA.

The following are some of the features of the LiFePo4wered/Pi+:

  • 1500 mAh 3.2 V LiFePO4 battery: Uses a Lithium iron phosphate that provides safety, high power density and extended cycle life of 2000+ cycles. The battery can also be used as a UPS.
  • Optional 600 mAh, 3.2 V LiFePO4 cell: This is merely a smaller battery for low power applications or when there is power loss in the main battery.
  • 2 A continuous load current: Can supply this with 1500mAH battery option or using an external source of power.
  • A Smart charge controller:
    • Over-charge protection: This feature allows the device to stay plugged in continuously without exploding because it stores the extra charge to help it serve as a UPS when needed.
    • Auto-adjusting charge current: Regular charge current can be up to 1.5 A when used with high power chargers. However, it will automatically reduce current when needed not to overwork low power sources when they are used.
    • Customizable MPP (Maximum Power Point) voltage: This helps to obtain maximum efficiency when powered directly from suitably sized solar panels.
  • Others:
    • On/off button: provides convenient boot/shutdown triggers even in headless setups, with the press and hold function to prevent accidental activation (external button can be added).
    • Green PWR LED: This indicates the Raspberry Pi power state, and it provides feedback to the user. External LED can be included.
    • Red CHRG LED: This tells the user when there is a power loss and when there is a need to charge the batteries.
    • Wake timer: This allows the Raspberry Pi to be off until when it’s needed for low duty cycle applications.
    • Real-time clock: It keeps track of time and makes sure the raspberry pi comes on at a programmed time.
    • Autoboot: Makes the Raspberry Pi run whenever there is sufficient battery power, or when an external power supply is available.
    • Auto shutdown: Automatically shuts the Raspberry Pi down when there is a power loss or after a programmed amount of time.
    • Application watchdog: can alert a user by flashing the PWR LED or trigger a shutdown/reboot if the user application fails to service the timer within a configurable amount of time.
  • Compatibility: Works with every known model of Raspberry Pi, this includes Raspberry Pi Model A+, Model B+, Raspberry Pi 2, Raspberry Pi 3, Raspberry Pi 3 Model B+, Raspberry Pi Zero and Raspberry Pi Zero W.
  • Hackers Friendly: It has convenient connection points for input power, 5 V output power, switched battery power, external button and LEDs(Light Emitting Diodes), and MPP customization.
  • Software:
    • LiFePO4wered daemon: This is responsible for the auto shutdown and real-time clock (RTC) duties.
    • Command line tool: allows simple configuration and access to all features.
    • Shared library, language bindings: C/C++, Python, and Node.js bindings allow integration into user programs.

The LiFePo4wered/Pi+ is planned for a crowdfunding campaign on crowd supply, and more details of the project campaign are available on the campaign page.

Researchers From NREL Discovered New Method To Develop Rechargeable Magnesium-metal Battery

A team of researchers from National Renewable Energy Laboratory (NREL) has discovered a new method for developing a rechargeable non-aqueous magnesium-metal battery. A proof-of-concept paper published in Nature Chemistry. It described how the scientists pioneered a method to enable the reversible chemistry of magnesium metal in the noncorrosive carbonate-based electrolytes and tested the concept in a prototype cell. The technology possesses many high potential advantages over conventional lithium-ion batteries. Some upgrades over Li-ion battery with this new kind of battery will be, higher energy density, greater stability, and lower cost.

magnesium-metal batteries
magnesium-metal batteries

NREL researchers Seoung-Bum Son, Steve Harvey, Andrew Norman, and Chunmei Ban are co-authors of the Nature Chemistry white paper, “An Artificial Interphase Enables Reversible Magnesium Chemistry in Carbonate Electrolytes” working with a Time-of-flight secondary ion mass spectrometry. The device enables them to investigate material degradation and failure mechanisms at the micro- to nano-scale.

Chunmei Ban, a scientist in NREL’s Materials Science department and corresponding author of the paper, said,

Being scientists, we’re always thinking: what’s next? The dominant lithium-ion battery technology is approaching the maximum amount of energy that can be stored per volume, so there is an urgent need to explore new battery chemistries that can provide more energy at a lower cost.

Seoung-Bum Son, a former NREL postdoc and scientist at NREL and first author of the paper, thinks this finding will provide a new avenue for magnesium battery design.

An electrochemical reaction powers a battery as ions flow through a liquid (electrolyte) from the negative electrode (cathode) to the positive electrode (anode). For batteries using Lithium, the electrolyte is a salt solution containing lithium ions. It’s also important to make the chemical reaction reversible for the battery to recharge again.

Magnesium (Mg) batteries theoretically contain almost twice as much energy per volume as of lithium-ion batteries. But previous research confronted an obstacle. The chemical reactions of the conventional carbonate electrolyte created a layer on the surface of magnesium that prevented the battery from recharging. The magnesium ions could flow in a reverse direction through a highly corrosive liquid electrolyte, but that blocked the possibility of a successful high-voltage magnesium battery.

The researchers developed an artificial solid-electrolyte interphase from polyacrylonitrile and magnesium-ion salt that protected the surface of the magnesium anode. This protected anode and significantly improved performance of the cell.

In addition to being more readily available than lithium, magnesium has other advantages over the more established battery technology. Firstly, magnesium releases two electrons which is higher lithium’s one, thus giving it the potential to deliver nearly twice as much energy as lithium. And second, magnesium-metal batteries do not experience the growth of crystals that can cause short circuits and consequently dangerous overheating and even fire, making magnesium batteries much safer than lithium-ion batteries.

Lipo Charge/Boost/Protect board in 18650 cell holder format

Peter6960 published a new build:

So couple months ago, GreatScott made a video where he designed a circuit. Nothing too innovative, just the same TP4056 charger the MT3608 Boost combined on one PCB. He did add a Lipo protection circuit though, initially using the same DW01. But then, the Aha moment from this video, he found a footprint compatible IC the FS312F-G – which is set at 2.9v! Way healthier for your cell’s longevity!
First of all I had to redraw all his work in Eagle (As I wont be using a cloud based service like EasyEDA for obvious reasons) and then order the PCBs. I added two boost circuits since I had the board space, as I can imagine needing dual voltages at some point (for example if that reverse LCD needed 12v and the Pi needed 5v – i could run both off one board.

Lipo Charge/Boost/Protect board in 18650 cell holder format – [Link]

Powering Batteries With Protons – A Potential Disruption in the Energy Industry

Climate Change have been a crucial factor taken into consideration by the Australian researchers from Royal Melbourne Institute of Technology before creating the first rechargeable proton battery. After considering all available options about cost and availability of the materials needed, the researchers in Melbourne decided to make a proton battery to meet up with the alarming increase of energy needs in the world.

Proton Battery

Lead researcher Professor John Andrews says, “Our latest advance is a crucial step towards cheap, sustainable proton batteries that can help meet our future energy needs without further damaging our already fragile environment. As the world moves towards inherently variable renewable energy to reduce greenhouse emissions and tackle climate change, requirements for electrical energy storage will be gargantuan”. The proton battery is one among many potential contributors towards meeting this enormous demand for energy storage. Powering batteries with protons has the potential to be more economical than using lithium ions, which are made from scarce resources. Carbon, which is the primary resource used in our proton battery, is abundant and cheap compared to both metal hydrogen storage alloys and the lithium needed for rechargeable lithium-ion batteries.

Here’s how the battery works; During charging, protons generated during water splitting in a reversible fuel cell are conducted through the cell membrane and directly bond with the storage material with the aid of electrons supplied by the applied voltage, without forming hydrogen gas. In electricity supply mode, this process is reversed. Hydrogen atoms released from the storage lose an electron to become protons once again. These protons then pass back through the cell membrane where they combine with oxygen and electrons from the external circuit to reform water. In simpler terms, carbon in the electrode bonds with the protons produced whenever water is split via the power supply’s electrons. Those protons pass through the reversible fuel cell again to form water as it mixes with oxygen and then generates power.

According to Andrews, “Future work will now focus on further improving performance and energy density through the use of atomically-thin layered carbon-based materials such as graphene, with the target of a proton battery that is truly competitive with lithium-ion batteries firmly in sight.” With the kind of progress made, it might not be now, however, lithium-ion batteries might be put out of the market in the nearest future.

The team is looking to improve their research, ameliorate the battery’s performance, and exploit other better materials like graphene to further put this proton battery to its fullest potential. Developments like will be needed if we are going to create sustainable future especially with the ever rising cost and demand of Energy.

One thing is sure, the Energy Industry is going to be disrupted now or in the future, and this proton battery innovation could just be one of the potential ways.

Low cost single cell L-Ion battery pack simulator

Mare @ e.pavlin.si designed a single cell Li-Ion battery pack simulator to facilitate the testing process of a new device.

Modern battery operated portable devices use smart battery packs. Every new development of an electronic medical device must follow strict design flow defined by world-wide or local regulatory
directives. The development process of any such device using smart battery pack requires specific operating conditions to meet the testing criteria. When smart battery pack is one of the main power sources the host system should be tested with several battery states. The testing is necessary during development, validation and later in production testing.

Low cost single cell Li-Ion battery pack simulator – [Link]

Newly Developed Internal Temperature Sensor For Li-ion Battery Enables 5x Faster Charging

Researchers at the University of Warwick in the UK have developed sensors which measure the internal temperature and electrode potential of Lithium batteries. The technology is being developed by the Warwick Manufacturing Group (WMG) as a part of a battery’s normal operation. More intense testings have been done on standard commercially available automotive battery cells.

Researchersdeveloped a sensor to measure the internal termperature and electrode potential of lithum batterry
Researchers developed a sensor to measure the internal temperature and electrode potential of lithium battery

If a battery overheats it becomes a risk for critical damage to the electrolyte, breaking down to form gases that are both flammable and can cause significant pressure build-up inside the battery. On the other hand, overcharging of the anode can lead to Lithium electroplating, forming a metallic crystalline structure that can cause internal short circuits and fires. So, overcharging and overheating of a Li-ion battery is hugely damaging to the battery along with the user.

The researchers at Warwick developed miniature reference electrodes and Fiber Bragg Gratings (FBG) threaded through a strain protection layer. An outer coat of Fluorinated Ethylene Propylene (FEP) was applied over the fiber, ensuring chemical protection from the corrosive electrolyte. The end result is a sensor which has direct contact with all the key components of the battery. The sensor can withstand electrical, chemical and mechanical stress faced during the normal operation of the battery while still giving accurate temperature and potential readings of the electrodes.

The device includes an in-situ reference electrode coupled with an optical fiber temperature sensor. The researchers are confident that similar techniques can also be developed for use in pouch cells. WMG Associate Professor Dr. Rohit Bhagat said,

This method gave us a novel instrumentation design for use on commercial 18650 cells that minimizes the adverse and previously unavoidable alterations to the cell geometry,

The data from these internal sensors are much more precise than external sensing. This has been shown that with the help of these new sensors, Lithium batteries that are available today could be charged at least five times faster than the current rates of charging.

This could bring huge benefits to areas such as motor racing, gaining crucial benefits from being able to push the performance limits. This new technology also creates massive opportunities for consumers and energy storage providers.

R-78S switching regulator boosts a AA battery to 3.3V

Recom’s first evaluation board allows engineers to effortlessly test the functionality of the R-78S switching regulator, which boosts a AA battery or external supply voltage to 3.3V for low power IoT applications. By Julien Happich @ eenewseurope.com:

The R-78S Evaluation Board demonstrates the performance of the R-78S which boosts single-cell AA battery voltage of 1.5V up to a stable 3.3V. This guarantees much higher energy capacities and reduces maintenance costs compared to button or coin cell batteries. This will effectively extend the operation lifetime of an application since the boost converter continues to operate at input voltages as low as 0.65V.

R-78S switching regulator boosts a AA battery to 3.3V – [Link]

JuiceBox Zero: Easiest way to power a Pi Zero with a battery

You have a Raspberry Pi project, but it’s no good stuck to a wall! JuiceBox Zero is the simplest way to properly power your Pi Zero. by Samuel Anderson @ kickstarter.com:

I had an amazing project for Raspberry Pi that needed to be battery powered. I searched and found a few boards that served the purpose.  Unfortunately, they were a bit cumbersome, and sadly, they weren’t “plug-n-play” with Raspberry Pi!

When the Pi Zero was released, I instantly saw the potential its tiny form factor provided for truly mobile inventions. But to be truly mobile, it can’t be tethered to a power source. Just imagine how useless a smartphone would be if it had to be plugged into the wall!

The project is live on kickstarter and available for funding.

Could Sodium-ion Batteries be a Replacement for Li-ion Batteries?

Batteries made by Tiamat, a sodium battery startup spun off from the National Center for Scientific Research in France.

In early 1990s lithium-ion batteries started gaining popularity as a substitute for nickel-cadmium batteries. They have higher energy density, low self- discharge, and low maintenance, but it was soon found that they have short life span, unstability which causes security concerns and creates the need for protection circuits (to maintain it within safe limits), and are really expensive to produce. Lithium is scarce (or is soon going to be), only 0,06% of earth crust is made of this material and its mainly found in South America. A start up called Tiamat formed by scientists at several French universities proposed an alternative to lithium-ion batteries, they developed the first sodium-ion battery in industry standard 18650 cell size.

Unlike Lithium, sodium makes up 2.6% of earths crust which makes it the sixth most abundant element. As a raw material sodium sells at about $150 a ton compared to $15,000 a ton for lithium. Sodium batteries are cheaper to produce than lithium batteries, leading to a lower selling price. Also, the lifespan is about ten years compared to lithium which is 4 years and Sodium-ion batteries can last for up to 5000 charge/discharge cycles. Tiamat batteries are not a fire hazard, and provide more stability for a cheaper price.

Scientists want to use these batteries mainly for mass storage of interment renewable energies such as solar o wind. Tiamat is not looking to make Li-ion batteries disappear, instead they want to focus on their long lasting power, and use it for stationary storage. This type of battery could be used in electric cars to allow lasting trips with short recharge time. Production has not started, but when it is approved, and they start to sell France could become a leader in this type of technology. This startup has the support of RS2E (Réseau sur le stockage électrochimique de l’ énergie) a French research network dedicated to energy storage devices, and they plan to launch the product on 2020.

Nowadays, lithium batteries are used mainly for smartphones, laptops, and cars that means that if a new technology was going to replace them, a much better alternative would be needed. Even when sodium batteries are cheaper and safer they still have performance issues that could affect their sales, but as Tiamat said they are not looking to replace these and their market is completely different. For now, the cells produced offer only about half of the energy density of Li-ion and are yet to be improved in many aspects.

[Source]

Improving Wearables with Flexible and Rechargable Battery

The stretchable batteries were printed on fabric for this demonstration. They make up the word NANO on the shirt and are powering a green LED that is lit in this picture. (Image courtesy of Jacobs School of Engineering/UC San Diego.)

Nowadays, there is a lot of technology that implements wearables in fashion, medicine, worker safety, accessories and much more. Many wearables are coupled with uncomfortable charging cables that are irritating for users to handle, some even have big batteries that make wearables a burden instead of an advantage. Statistics show that people tend to abandon this devices after only 6 months of buying them, and battery life and portability is one of the issues. Addressing portability, the nanoengineers at the university of California San Diego have developed a new material that allows the creation of flexible, stretchable, and rechargeable batteries which can be printed into clothes.

This material named SIS can be expanded twice its size in any direction without any damage. SIS is made from a hyper elastic polymer material made from isoprene and polystyrene. The ink used to print the batteries is made with Zinc silver oxide with bismuth (to make it rechargeable). The whole flexible battery is made from both SIS and the ink.  When zinc battery runs out, their electrodes react with the liquid electrolyte inside the battery which eventually shorts circuits the battery, bismuth prevents this from happening and ensures battery durability.

The prototype has 1/5 the capacity of a hearing aid rechargeable battery and it´s 1/10 as thick. It costs only $0.5 USD to produce and uses commercially available materials which makes it cheaper and smaller, but not as efficient as a common wearable battery. Two of these batteries are needed to power a 3 v LED, so a lot of them would be needed to power a bigger device.

The engineers are working towards improving performance to make them a good choice for wearable developers. They also want to extend their work towards lithium ion batteries, supercapacitor, and photovoltaic cells. Commercially, the short-term objective is to replace coin batteries for printable batteries which have a competitive price.

When performance is improved these batteries could power all kind of wearables for medical purposes such as shirts that can detects fever, or glucose sensor in diabetic patients. Also, for recreational purposes such as a sweatshirt with LEDs to run during night, or a shirts that detects movement and helps you with your movements while playing golf. Engineers for this project should consider implementing wireless charging to make it even more comfortable for the user by ending the need of cables and small connectors which are a nightmare for most of the people.

[source]